Easier way to find Gauss quadrature points $\gamma \rightarrow j$

 $P_n(x)$ n 0 1, 1, 0, 3, 9 = F 13 5 = 0 & 5 = 7 13 5 = 7 & 5 = 7 1 $\begin{array}{c} \underbrace{1}_{\frac{1}{2}(3x^{2}-1) \longrightarrow \frac{1}{2}(3x^{2}-1)}_{\frac{1}{2}(3x^{2}-1) \longrightarrow \frac{1}{2}(3x^{2}-1) \longrightarrow \frac{1}{2}(3x^{2}-1) \longrightarrow \frac{1}{2}(3x^{2}-1) \longrightarrow \frac{1}{2}(3x^{2}-1) \longrightarrow \frac{1}{2}(3x^{2}-3x) \longrightarrow \frac{1}{2}(3x^{2}-3x) \longrightarrow \frac{1}{2}(3x^{2}-3x) \longrightarrow \frac{1}{2}(3x^{2}-3x) \longrightarrow \frac{1}{2}(3x^{2}-3x) \longrightarrow \frac{1}{2}(3x^{2}-3x) \longrightarrow \frac{1}{1}(429x^{7}-693x^{5}+315x^{3}-35x) \longrightarrow \frac{1}{1}(2125x^{8}-12012x^{6}+6930x^{4}-1260x^{2}+35) \longrightarrow \frac{1}{128}(12155x^{9}-25740x^{7}+18018x^{5}-4620x^{3}+315x) \longrightarrow \frac{1}{256}(46189x^{10}-109395x^{8}+90090x^{6}-30030x^{4}+3465x^{2}-63) \longrightarrow \frac{1}{2}(3x^{2}-3x) \longrightarrow \frac{1}$ \rightarrow 1 2 3 4 5 6 51 کۍ (8 9 10

Figure 4: Legendre polynomials (Source: http://en.wikipedia.org/wiki/Legendre_polynomials

Gauss Points (± x _i)			Weights (w _i)		
.57735	n = 2 02691	89626>	1.00000	00000	00000
0.00000	n = 3 00000	00000	0.88888	88888	88888
- 0.77459	66692	41483	0.55555	55555	55555
	n = 4				
0.33998	10435	84856	0.65214	51548	62546
0.86113	63115	94053	0.34785	48451	37454
	n = 5				
0.00000	00000	00000	0.56888	88888	88889
0.53846	93101	05683	0.47862	86704	99366
0.90617	98459	38664	0.23692	68850	56189

$$\xi_1 = .577 - \omega_1 \tau$$

 $\xi_1 = - \omega_2$

HW5: 1D Quadrature

1. **50 Points** Use a 3 point Gaus and 5 point Newton-Cote quadrature rule to evaluate the following integral and obtain their respective errors with respect to exact value of the integral $I_e = \tan^{-1}(2) - \tan^{-1}(-1)$. Quadrature points and weights are given in fig. 1.

$$I_{e} = \operatorname{var}(z) \quad \operatorname{un}(z), \quad \operatorname{guadative points and give in a by it
I = \int_{-1}^{2} \frac{dx}{1+x^{2}} \left(\frac{1}{1+x^{2}} - \frac{1$$

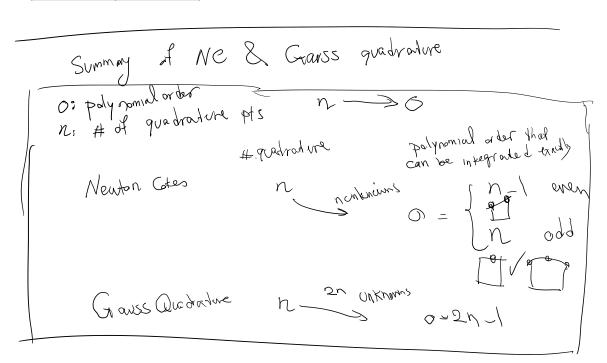
ME517 Page 1

$$\int_{-1}^{-1} \int_{-1}^{-1} \int_{-$$

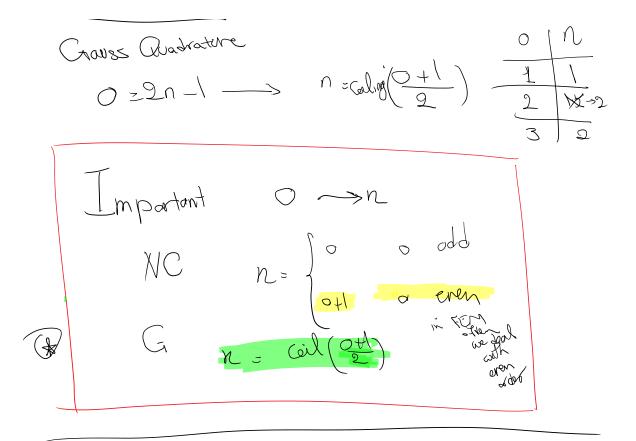
- 1.5	$(\omega, \mathcal{J}(\xi)) + \omega_{\mathcal{J}}(\mathcal{G}))$
- \	

	Gauss Points (± x _i)	Weights (w _i)		
جر=	n = 2 0.57735 02691 89626	N 15QN 1.00000 00000 00000		
5,2	n = 3 0.00000 00000 00000 0.77459 66692 41483	0.88888 88888 88888 0.55555 55555 55555		
	n = 4 0.33998 10435 84856 0.86113 63115 94053	0.65214 51548 62546 0.34785 48451 37454		
	n = 5 0.00000 00000 00000 0.53846 93101 05683 0.90617 98459 38664	0.56888 88888 88889 0.47862 86704 99366 0.23692 68850 56189		

<u> </u>	-+
312-1	52 1
13	13



ME517 Page 2



How do we use * in FEM integrations: From last time we had

$$\begin{aligned} \mathcal{H}^{e} = \int_{-1}^{1} \frac{EA(5)}{3(5)} & \begin{bmatrix} s-\frac{1}{2} \\ 5+\frac{1}{2} \\ -2s \end{bmatrix} \begin{bmatrix} s-\frac{1}{2} \\ 5+\frac{1}{2} \\ -2s \end{bmatrix} \begin{bmatrix} s-\frac{1}{2} \\ 5+\frac{1}{2} \\ -2s \end{bmatrix} \frac{1}{25} \frac{1}{25$$

If we ignore the form of AE and J, we deal with a matrix of polynomials of order o = 2.

NC
o even
$$\mathcal{R} = G + 1$$

=S

ME517 Page 3

1º 2

NC

$$0 = 2$$
 over $n = 0 + 1 = 3$
 G_0
 $n = Gil(\frac{0+1}{2}) = 3$

Full integration order

Order of the integrand when AE and J are constant (treating the material as homogeneous, linear, constant section, not distorted, ...)

J

For this example, full integration order = 2

If these assumptions hold, the integral is EXACT.
At z Gristiant

$$J_{3} - \delta_{3}$$
 J_{1}
 $J_{3} - \delta_{3}$ J_{3}
 $J_{3} - \delta_{3}$ $J_{3} - \delta_{$

Q1: How many quadrature points are needed to integrate K exactly when J is not constant?

With no number of points, we can integrate K exactly in that case

Q2: When AE and/or J are not constant, how many quadrature points should we use then?

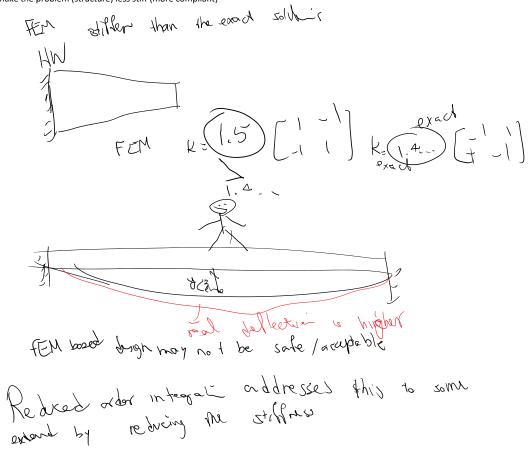
- The **full integration order is sufficient** and used in practice unless the element is highly distorted (here x3 far from xave), or we deal with nonlinearities, ...
- Reason: Because the error we introduce by not integrating k exactly is not going to dominate discretization error (C h^(p + 1))

Q3: Are their benefits to using fewer quadrature points than full integration order:

Yes

- Reducing assembly computational time because this cost is directly proportional to the number of quadrature points in the domain.
- We make the problem (structure) less stiff (more compliant)

ME517 Page 4



I'll discuss how low we can go with reduced order integration later.

Now has calculate
$$e^{2}$$
 by quadrature
 $e^{2} = \begin{pmatrix} NU(1) \\ TU(1) \\ TU(1) \\ TU(1) \\ TU(1) \\ TU(1) \\ TU(2) \\ T$

Graves que dreiving

$$k^{2} = \begin{pmatrix} AE(1) \\ T(1) \\ T(2) \\ T(3) \\ T(4) \\ T(5) \\ T(5$$

×_

