
$B_{\xi} \rightarrow B$
How about using the chain rue:

20 $\frac{\partial N^{c}}{\partial x_{1}}$
Peal

$$
x_{1}\left(\xi_{1}, s_{c}\right)
$$

$$
x_{2}\left(\xi_{1, \xi_{2}}\right)
$$

But there is a problem with this

Let's go the opposite direction:

$$
\begin{array}{lll}
\frac{\partial N^{i}}{\partial s_{1}}=\frac{\partial N^{i}}{\partial x_{1}} \frac{\partial x_{1}}{\partial s_{1}}+\frac{\partial N^{i}}{\partial x_{2}} \frac{\partial x_{2}}{\partial s_{1}} & \quad, i=1, \ldots, 4 \\
\frac{\partial N^{i}}{\partial s_{2}}=\frac{\partial N^{i}}{\partial x_{1}} \frac{\partial x_{1}}{\partial s_{2}}+\frac{\partial N^{i}}{\partial x_{2}} \frac{\partial x_{2}}{\partial s_{2}} & l^{i} & { }_{n c d e \neq}
\end{array}
$$

well write this in matrix form
 and den't haven! han't to obam his

$$
J^{-t}=\left(J^{t}\right)^{-1}=\left(g^{-1}\right)^{t}
$$

pepear equat- (1) for $i=1, \ldots, 4$
2

$$
\begin{aligned}
& B-J^{-1} B_{\xi}
\end{aligned}
$$

$$
\begin{aligned}
& K=\int_{\xi_{1}-1}^{1} \int_{s_{2}=-1}^{1} B_{\xi}^{t}\left(J_{\left.\left(J_{\operatorname{sed}}^{-t}\right)^{t}\right)^{t}=A}^{t} k J^{-t} B_{\xi} \text { det } d \xi_{\xi_{1}} d_{\xi}\right. \\
& \text { (4) } t=\int_{-1}^{1} \int_{-1}^{1} B_{\rho}^{t}\left(J^{-1} k J^{-t}\right)_{s} \operatorname{det} J d \xi_{1} d \xi_{\mathcal{L}}
\end{aligned}
$$

General stifferess(Conductivin) matrix for ANY Quad elewnent

 changeof functix $x(\xi)$ is equal to grad x / ξ time's change of orgu I

Hppp eq 5 to $d \overrightarrow{A_{j}} \& d \overrightarrow{B_{j}}$
$d C A_{x}=\operatorname{det} J d c f_{s}$ this is eqn (3) a bove

Now that we have fully transformed equations from x to
Let's now calculate k
equation 4

$$
\left.\alpha=\int_{-1}^{1} \int_{1}^{1} B_{\xi}^{t}\left(\xi^{-1} / \alpha \pi^{t} \mid \nmid\right) B_{j} d \xi_{1} d\right\}_{\eta}
$$

(a) calalabe B_{s}

$$
\begin{aligned}
& N=\left[N_{1}, N_{2}, N_{3}, N_{4}\right]=\left[\frac{\left(1-\xi_{1}\right)\left(1-\xi_{2}\right)}{4}, \frac{\left(1+\xi_{1}\right)\left(\left(-\xi_{2}\right)\right.}{4}, \frac{\left(1+\xi_{1}\right)\left(\left(+\xi_{2}\right)\right.}{4},\left(1-\xi_{1}\right)\left(1+\xi_{2}\right)\right.
\end{aligned}
$$

plug B_{s} in quai for K

What is a full integration order for this element?

The integrand $I\left(S_{1}, \gamma_{2}()\right.$ is a 4×4 matrix
What: in e FULL INTEGRATION ORDER for $5\left(\xi_{1}, s_{2}\right)$

J is constant

$K\left(\xi_{1} \xi_{4} 1=10.1 \xi_{1}-3 \sqrt{2}\right.$

$$
\beta=10 \text { nomos }
$$

We need to the same order check for all the other 15 components of the stiffness, but a short look at the matrix components show that the order for terms is 2 in ς_{1} and 2 in $\oint_{\text {? }}$

Now let's integrate the dement Numencally

Equation (7)

S_{1} is fixed order in $s_{n}-2$
Neutan_Cdes scheme $o_{s_{2}}=2 \longrightarrow n_{s_{2}}=3$

$$
\begin{aligned}
k^{e} & =\int_{\xi_{1}=-1}^{1} d \xi\left(\frac{(1-(-1))\left(\frac{1}{6} I(\xi,-1)+\frac{4}{6} 5(\xi, 0)+\frac{1}{6}\right.}{(e n y) h} I(\xi, 1)\right) \\
& =\int_{\xi_{1}=1}^{1}(\frac{1}{3} \underbrace{I(\xi,-1)+\frac{2}{3} J(\xi, 3)+\frac{1}{3}} I^{\prime}\left(\xi_{1}\right)
\end{aligned}
$$

Orde of 5 is 2 in $s_{1} \longrightarrow n_{\xi_{1}}=3\left(q_{\left.\xi_{1}+1\right)}\right.$

$$
\begin{aligned}
& \mu^{e}=(1-(-1))\left(\frac{1}{6} J^{\prime}\left(s_{1}-1\right)+\frac{4}{6} J^{*}\left(\xi_{1}=0\right)+\frac{1}{6} 5^{\prime}\left(s_{1}=1\right)\right) \xrightarrow[r_{1}=1 \quad \delta_{1}, 0]{ } \\
&=\frac{1}{3} J^{\prime}\left(\xi_{1}=1\right)+\frac{2}{3} 5^{\prime}\left(\xi_{1}=0\right)+\frac{1}{3} 5^{\prime}\left(\xi_{1}-1\right)
\end{aligned}
$$

NC pants \& weights
comers

$$
\begin{aligned}
& K=\frac{1}{9}(I(-1,-1)+I(-1,1)+5(1,-1)+5(1)) \\
& +\frac{2}{9}(J(0,1)+5(0,-1)+I(-1,0)+I(1,0)) \\
& \text { (9ne) }+\frac{4}{9} I(0,0) \\
& \text { no need to write thil ni yourtw }
\end{aligned}
$$

(B)

For which one 9NC calculates k exactly?

Do the same thing with Gauss Quadrature:

INC \rightarrow P pts
$2.25 \times$ mare expensive
Well use Gauss Quadrature

Relating this to the specific geometry we have before
Thursday, December 1, 2022
11:17 AM

From last ture

$$
\begin{aligned}
& x_{1}\left(\xi_{1} \xi_{2}\right)=\frac{1}{4}\left(3+3 \xi_{1}+\xi_{2}+\xi_{1} \xi_{2}\right) \\
& x_{2}\left(\xi_{1}, \xi_{2}\right)=\frac{1}{4}\left(3+\xi_{1}+3 \xi_{2}+\xi_{2}\right)
\end{aligned}
$$

0 sellhis in

Equation (7)
folly Knmur
Calculate k using 9NC or 9Gauss (preferred).

