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Path to computing 1st increment automatically =3
Motivation from a function of two variables"
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Can we do a similar thing for functionals?
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Equation (2) is identical to first increment statement we obtained last time by brute force (plugging U%s'& ) in the
equation

Proof of how one can take derivative of functions:
https://rezaabedi.com/wp-
content/uploads/Courses/FEM/FunctionalOptimum.pdf
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https://rezaabedi.com/wp-content/uploads/Courses/FEM/FunctionalOptimum.pdf
https://rezaabedi.com/wp-content/uploads/Courses/FEM/FunctionalOptimum.pdf
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Functionals Optimality condition

@ For a function f : R — IR we observed that a necessary condition for optimality of f at x¢
was, 0 f = gé(:ro).d:c =0.

@ What do we expect a necessary optimality condition for a functional IT be?
a necessary extremum condition for IT at y is

61T = 0, where 41T is a shorthand for 811(y, dy) (92)

@ How to evaluate 8177

dy d™y on oIl _ dy oI
nm=ly,—,..., o = —dy+——90(—)+++ -+——50 93
(v 3 =) = By y+adr ($)+ +ad;‘= (= ,,) (93)

Note the similarity to the corresponding conditions for a function f(z): 6f = %f.dr =0.

" . - dng dny dn(sy dny dn(sy
H ) = & = ] = = oy(™
wingady =g vy o m e ¥ (dz") (dr,, ) v
(94)
Thus, noting that y(") := g—z,-'é, (93) can be rewritten as,
orr on oIl
ST oo () BIE = = i e B e e B
IT=1H(y,y y) = | By U+ W heent g™ Y (95)
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y=y+dy

y and y satisfy
essential boundary condition =

dy = y — y satisfies homogenous version of y : exact solution

essential boundary condition

© A necessary condition for the optimality of functional IT at y is (cf. (95)),

-n
m=1myy,....v'™) = |é0= ‘9”6 +3—”¢5 LTI +a

sy,
oy Yt oy By Y (96)

© Solution y satisfies all essential boundary conditions.
© Increment dy satisfies the homogeneous version of all essential boundary conditions.
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Compare this with Balance law -> Strong form -> WRS -> Weak statement on slides 51-57:

o du
Findy eV ={ue C*(D) | u(0) =7, T(U’ = 0}, such that, (62a)
T
. 2 du
Yw € W= {u € C*(D) | u(0) =0, J—(O).—_U} (62b) /
dr
L 2
d-u d*y dw - =
0= / —Fl— —wq| dz +<{ —M + wl (62¢c)
0 d dz? dz < z=L
— N
Summary A
@ Both V and W have the same regularity (C™ (D)) = M/2, M = 4 is the order of the differential equation
@ The less demanding regularity conditions for the solution compared to the weighted residual statement u /
(("“ (D) — C™ (D)) takes us to the same function space needed for the balance law (balance of linear and angular
momentum for Euler Bernoulli beam Z
@ Both V and W exactly enforce the essential boundary conditions, with the difference that W satisfies the homogeneous b
version
57 / 456 ( 3
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What else an energy method gives us?
What if we do integration by parts on an energy statement?
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Energy method to Strong Form and Boundary Conditions

We realized the convenience of energy methods in
deriving the weak form in one step. They can also

be used to strong form and boundary conditions by aD, S LT

the common approach of integration by part Essential boundary lp:‘> Natural boundary
(divergence theorem in D > 1). ;’:;{'?" - v oD
The weak form from (107) is: I

L L = .
81T = /0 oy (z) EIY" () dz _/0 by(z)q(z) dz + y(L)V — éy'(L)M =0

Two consecutive integration by parts yield:

L déy d d?y a2y |E
/(; e ;( Id 2)d:l: —/ dy(z)q(z) dz + Sy(L)V — 8y’ (L)M + &y’ (EI ) =0=>
f"& i o de= 8y’ (L) [ A2 Elday(L) 5 ’(0)E‘Id2y(0)

—_— I— - —_— — —_—
0 . dz? dz? . " dz? . dz?
2 L

= d d“y
+6y(L)V — {(Sy—(EI—2)}| =0
dx dx 0

Lo [2PBL dz — 8y'(L) (M E‘Ide(L) +oyL) (v d(Elde)

~/0 ¥ dz2 dz2 * = ¥ dz2 ¥ dz dz?
d?

+6u(0) = (EI3)(©) =0

90 / 456
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Energy method to Strong Form and Boundary Conditions
M@\/EIML\ =

g} et ; o
y=u L L \/CL\ . iﬂj\(&f S\QJC\(L\: %(L\ g

The terms in red in previous equation are zero because the function increment belongs to W
given in (107):

aD, “

W = {v € C2([0,1)) | v(0) = 0, $(0) = 0}

Vi
Thus the last equation reduces to . S\ 9 0@\\09 (Ejzﬁﬁ\ - :O
L | 2 DW\ (1 7
/ Sy (‘]'E)I ¥ —q) dz (113a)
0 dz? dz?
- 8y'(L) <M EI—(L)) (113b)
d2y
+ éy(L) (V - —(E'Id:':2 ) =0 (113¢)

By choosing dy such that éy(L) = %‘S;'L(L) = 0 we reduce (113) to (113a) equal to zero for such

dy increments:
91 /456

Natural boundary conditions are "naturally" derived from an energy statement

Please read virtual work slides

Energy Method vs. Principle of Virtual Work

@ Principle of virtual work or virtual displacement in solid mechanics states that if u
is the solution to a boundary value problem, the virtual internal and external works
produces by admissible virtual displacements du are equal.

@ Virtual displacements du refer to displacements that are zero at essential boundary
values (so that solution displacement plus virtual displacement 1 = u + du (cf.
(79)) as another admissible trial function also satisfies essential boundary
conditions).

@ Virtual Displacement /Virtual work is basically the equation we obtain by
minimizing the energy function 817 = 0.

@ Similar principles (virtual temperature for heat flow in solids and virtual velocities
for fluid flow) are also directly derived from 61T = 0.

@ While principle of virtual work can be obtained from 811 = 0, it is often quite easy
to directly write and equate internal and external works for a given problem.
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Equation (98) can be written as,

Find u € V = {v € C'([0, L]) | v(0) = @}, such that,
Yéu e W= {v e C*([0,L)) | v(0) = 0}
d=0u F(u(z))

L e, e,
/ ou'(z) EAY/ (z) dz =
0

Virtual Internal Work

‘ Su(z)g(x) dz + éu(L)F (109)

0
~

Virtual External Work

Note that the internal work differential is:

du + /ll—, dudx

6([ (lI
<
F(u(r)) = EA$

dx

dV = F(u(x)).(du + ;—idud.r) — F(u(x)).0u
dz

s ddu F(u())dz (110) F(u(x))

1z >

4 H
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