In previous sessions we used different approaches to obtain the WRS or the Weak statement (WK)

Now we want to solve the problem numerically

$$
u^{h^{p}}=\sum_{i=1}^{n} a_{i} b_{i}(x)+\phi_{p}(x)
$$

$$
n=\# \text { of unknowns }
$$

$x=2$
(a) $\phi_{i}=$ Basis functions: Sastify (homogeneous) version of all
ii) $\phi_{p}=$ Particular sochi-
\longrightarrow seticsion all essential $B C$
$\begin{array}{ll}\text { ii) } \phi_{p}(\theta) & =1 \\ \text { i) } \phi_{i}(0) & =0\end{array} \quad n=2$
1

$\cos x$

$$
\begin{aligned}
& u^{h}(x)=\phi_{1}(x)+a_{1} \phi_{1}(x)+a_{2} \phi_{2}(x) \pm 1+a_{1} x+a_{2} x^{2} \\
& u^{h}(0)=1+a_{1} \cdot \theta_{1}+a_{2} 0=1
\end{aligned}
$$

$$
x, x^{2}
$$

Solving the problem by WRS (and later WK):

$$
\int_{0}^{L} \omega R_{i} d x+\underbrace{\omega_{f}}_{w^{*}} l_{\text {see shal for }}^{\omega_{f}}(L) R_{f}(L)=0
$$

$\underbrace{}_{\text {will }}$ see that for the lecol square melhod af $\neq \omega$

$$
\begin{equation*}
\int_{0}^{L} \omega((\underbrace{\left.E A u^{\prime}\right)^{\prime}+q}_{R_{i}}) d x+\omega_{f}(L)(\bar{F}-\underbrace{E A u^{\prime}(L)}_{F(L)}))=0 \tag{1}
\end{equation*}
$$

Siñer eventually for figure ($D J^{\prime} / 1$ use $E-1$, A.l, let's do this sibsititici now (2) $u^{h}=\phi_{p}+\sum_{d=1}^{n} a_{i} \phi_{i}=\phi_{p}+\left[\phi_{1} \ldots \phi_{n}\left[\begin{array}{l}a_{1} \\ 1 \\ 1 \\ a_{n}\end{array}\right]=\phi_{p}+\phi^{a}\right]$
(-1) for $E=1, A=1$

$$
\begin{equation*}
=\quad \int_{0}^{b} \omega\left(u^{h^{\prime \prime}}+q\right) d x+\omega_{f}(L)(\vec{F}-\underbrace{E A}_{1} u^{h^{\prime}}(L))=0 \tag{3}
\end{equation*}
$$

plg (2) in (3)

$$
\int_{0}^{L} \omega(\underbrace{\text { (2) in (3) }}_{w^{h^{\prime \prime}}} \underbrace{\phi_{p^{\prime \prime}}^{\prime \prime}+\left[\phi_{1}^{\prime \prime}(x) \ldots \phi_{n}^{\prime \prime}(x)\left[\begin{array}{c}
a_{1} \\
1 \\
1 \\
a_{n}
\end{array}\right]\right.}_{1}+q(x)) d x
$$

We need to satisfy equation (4) for n equations (so ending up with n equations, n unknowns a1, ..., an) Let's call the weight functions $w 1(x), \ldots, w n(x)$

$$
\omega=\left[\begin{array}{c}
a(x) \tag{5}\\
\omega_{c}(x) \\
1 \\
\vdots \\
\omega_{n}(x)
\end{array}\right]
$$

plog (5) in (4):

$$
\begin{aligned}
& +\left[\begin{array}{c}
\omega_{1}(L) \\
\vdots \\
c_{p_{n}}(L)
\end{array}\right)\left(\bar{F}-\left[\phi_{p}^{\prime}(L)+\left[\phi_{1}^{\prime}(L) \ldots \phi_{n}^{\prime}(L)\right]\left(l_{1}^{a_{1}}\left(l_{a_{n}}\right)\right)=0\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } L^{L} l^{a} 1 \\
& -\int_{0}^{L}\left[\begin{array}{l}
\omega_{1} \\
1 \\
\omega_{n}
\end{array}\right](x) q(x) d x
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fr (Force from soke }
\end{aligned}
$$

$$
\begin{align*}
& \text { term } \quad r=-q \text {) } \tag{6}\\
& \text { (Force from Newman BC) }
\end{align*}
$$

In general

$$
1=\underbrace{T \gamma}_{\substack{\text { sourcekem } \\ \text { force }}} \underbrace{1 N}_{\substack{\text { Norman } \\ \text { BC } \\ \text { force }}} \underbrace{1}_{\substack{\text { Dirchle } B C \\ \text { force }}} \underbrace{1}_{\substack{D}}
$$

Let's solve problem 1 with $\mathrm{n}=2$ and $\quad \phi_{1}=x, \quad \phi_{2}=x^{2}, \quad \phi_{p}=1$

$$
\begin{aligned}
& \phi=\left[x, x^{2}\right] \\
& \phi^{\prime}=[1,2 x]
\end{aligned}
$$

from eq $6 \phi^{\prime \prime}=[0,2]$

$$
=\int_{0}^{2}\left[\begin{array}{l}
\omega_{1}(x) \\
\omega_{2}(x)
\end{array}\right]\left[\begin{array}{ll}
0 & 2
\end{array}\right] d x-\left.\left[\begin{array}{l}
\omega_{f_{1}}(2) \\
\omega_{f_{2}}(2)
\end{array}\right]\left[\begin{array}{ll}
1 & 2 x
\end{array}\right]\right|_{x=2}
$$

$\Rightarrow(7 a) \quad K=2 \int_{0}^{2}\left[\begin{array}{ll}0 & \omega_{1}(x) \\ 0 & \omega_{2}(x)\end{array}\right] d x-\left[\begin{array}{l}\omega_{f_{1}}(2) \\ \omega_{f_{2}}(2)\end{array}\right]\left[\begin{array}{ll}1 & 4\end{array}\right]$
Dirichlet BC force, from eq 6

Newman $B \subset$ force, from ep 6

$$
F_{N}=-\underset{\sim}{F}\left(\left.\right|_{\underset{w_{n}}{ }(L)} ^{a_{1}(L)} \mid\right.
$$

$$
\begin{aligned}
& \left.r_{N}=-\underset{1}{\underset{1}{1}} \underset{\left(u_{n}(L)\right.}{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{N}=-\left[\begin{array}{l}
\omega_{f_{1}}(2) \\
\omega_{f_{2}}(2)
\end{array}\right] \\
& \text { Source term 9: iron en } 6
\end{aligned}
$$

Fa, - $7 d$ are

We'll make difference choices for weights to get different numerical methods
Method 1) Subdomain method
Back grand

In subdomain method, the weights are characteristic functions

Equation (7):

$$
K=\int_{0}^{2}\left[\begin{array}{l}
\omega_{1} \\
\omega_{2}
\end{array} \left\lvert\,\left[\begin{array}{ll}
0 & 2
\end{array}\right] d x-\left[\begin{array}{l}
\omega_{f_{1}}(21 \\
\omega_{f_{2}}(2)
\end{array}\right]\left[\begin{array}{ll}
1 & 41
\end{array}\right.\right.\right.
$$

$$
\omega_{f_{1}}=w_{1}=X_{[0,1]}
$$

$$
x=0
$$

$x=2$

From equation (7):

$F=\left[\begin{array}{c}-1 \\ -1\end{array}\right] \quad K=\left[\begin{array}{cc}0 & 2 \\ -1 & -2\end{array}\right] \quad K_{a}=f$
$\Rightarrow a=\left[\begin{array}{c}2 \\ -1 / 2\end{array}\right]$

Bar example, $n=2$, Comparison of solutions

