Discrete Galerkin formulation for solid bar

- $\mathbf{F}_{r}, \mathbf{F}_{N}$, and \mathbf{F}_{D} are given by,

$$
\begin{aligned}
& \mathbf{F}_{r}=\left(\phi^{\mathrm{T}}, q\right)_{r}=\int_{\mathcal{D}}[\phi]^{\mathrm{T}} q \mathrm{dv}=\int_{0}^{L}\left[\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\vdots \\
\phi_{n_{f}}
\end{array}\right] q \mathrm{~d} x \\
& \mathbf{F}_{N}=\left(\phi^{\mathrm{T}}, \bar{F}\right)_{N}=\int_{\partial \mathcal{D}_{f}}[\phi]^{\mathrm{T}} \overline{\mathbf{F}} \cdot \mathrm{~N} \mathrm{ds}=\left(\left[\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\vdots \\
\phi_{n_{f}}
\end{array}\right] \bar{F}\right)_{x=L} \\
& \mathbf{F}_{D}=\mathcal{A}\left(\phi^{\mathrm{T}}, \phi_{p}\right)=\int_{\mathcal{D}} \frac{\mathrm{d}}{\mathrm{~d} x}[\phi]^{\mathrm{T}} E A \frac{\mathrm{~d}}{\mathrm{~d} x} \phi_{p} \mathrm{dv}=\int_{0}^{L} \frac{\mathrm{~d}}{\mathrm{~d} x}[\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\vdots \\
\phi_{n_{f}}
\end{array} \underbrace{E A}_{2} \frac{\mathrm{~d}}{\mathrm{~d}} \phi_{p} \mathrm{~d} x \quad \text { (301c) }
\end{aligned}
$$

In finite element method (FEM) we denote basis functions (phis) by N and call them shape functions. Shape functions take the value of 1 Q, one degree of freedom (dot)

$2 D$ has condater
beam pirblen

pirblen

$$
\begin{aligned}
n_{p} & =\# \text { free dofs } \\
& =4 \\
n_{p} & =\# \text { prescribed dofs } \\
& =1
\end{aligned}
$$

$u: \bar{u}=1$
we used $\phi p=\bar{y}=1$ before how abot now?

$n_{f}=3$
$n_{p}=2$

$N_{(i)}$ or N_{i} : i reders to dof $\#$

$$
u^{h}(x)=\phi_{p}(x)+\sum_{i=1}^{n_{q}} a_{i} N_{i}(x)=\underbrace{\sum_{i=1}^{n_{p}} a_{i} N_{i}(x)}_{\phi_{p}})+\sum_{i=1}^{n_{f}} a_{i} N_{i}(x)
$$

same as

$$
u^{h}(x) \cdot\left[\begin{array}{lll}
N_{1}(x) & N_{2}(x)
\end{array}\right]\left[\begin{array}{l}
a_{i} \\
a_{i}
\end{array}\right]+\left[\begin{array}{lll}
N_{1}(x) & N_{1}(x) & N_{3}(x)
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

this example

$$
\begin{aligned}
& a_{i}=0.1 \\
& a_{i}=3
\end{aligned}
$$

In terms of notal we wrike
in terms of notable. we write

$$
\begin{array}{rlrl}
u_{1}^{h} & =\sum_{i=1}^{n_{p}} 0_{i} N_{i}^{-}(x) & \sum_{i=1}^{n} a_{i} N_{i}(x) \\
& =\bar{N} \bar{a} \cdots N a \\
& \bar{N}=\left[N_{i} \cdots N_{n_{p}}\right] & \bar{a}=\left[\begin{array}{c}
a_{i} \\
\vdots \\
\bar{a}_{n_{p}}
\end{array}\right] \\
& N_{2}\left[N_{1} \cdots N_{n_{f}}\right] & a=\left[\begin{array}{c}
a_{1} \\
1 \\
\vdots \\
a_{n f}
\end{array}\right]
\end{array}
$$

$$
n_{p}=\# \text { prescribed dots }
$$

analog nodal:

$$
\begin{aligned}
& u^{h}=\sum_{\sum_{i=1}^{n_{p}} a_{i}^{p}} N_{i}^{p}(\lambda)+\sum_{i=1}^{n_{p}} a_{i}^{f} N_{i}^{f}(x) \\
& =N_{a}^{P} P+N_{a}^{f} \\
& N^{p}=\left[N_{1}^{p} \cdots N_{n \beta}^{p}\right) a^{p}=\left[\begin{array}{c}
a_{1}^{p} \\
1 \\
1 \\
a_{n_{p}}^{p}
\end{array}\right] \\
& N^{f}=\left[\begin{array}{lll}
N_{1}^{l} & \cdots & N_{n p}^{f} l
\end{array} a^{f}=\left[\begin{array}{l}
a_{p}^{f} \\
1 \\
1 \\
a_{n f}^{p}
\end{array}\right]\right. \\
& \text { often af \& } N^{f} \text { are } \\
& \text { simply written as a \& N }
\end{aligned}
$$

2D example
Heat condudion
each node has 1 dol (Temperat ere)

$$
\begin{aligned}
& n=B \\
& n_{f}=F \\
& n_{\bar{p}}=6
\end{aligned}
$$

 Dp approximates
prescribed BC

$$
\begin{aligned}
& \phi_{p}=a_{T} N_{i}(\vec{x})+a_{2} N_{2}(x)+\cdots+a_{6} N_{\vec{\sigma}}(x) \\
& \phi_{p}\left(n_{2}\right)=b_{0} a_{i} 11+0=0=1
\end{aligned}
$$

B. Essential Boundary Conditions

$$
\begin{align*}
n_{\mathrm{p}} & :=\text { number of (prescribed) dof on } \partial \mathcal{D}_{u} \\
(.) & =\text { decoration for prescribed dofs } \\
\left\{\overline{1}, \ldots, \overline{n_{\mathrm{p}}}\right\} & =\text { global dofs on } \partial \mathcal{D}_{u} \tag{308}\\
\overline{\mathbf{a}}=\left[\bar{a}_{\overline{1}}, \ldots, \bar{a}_{n_{\mathrm{p}}}\right]^{\mathrm{T}} & =\text { vector of prescribed values for these dobs } \\
\overline{\mathbf{N}}=\left[\bar{N}_{\overline{\mathrm{B}}}, \ldots,, \bar{N}_{n_{\bar{m}_{\mathrm{p}}}}\right] & =\text { (row) vector of shape functions for these dogs } \\
\overline{\mathbf{B}}=\left[\bar{B}_{1}, \ldots,, \bar{B}_{n_{\mathrm{p}}}\right] & =\text { (row) vector of "displacement to strain" for these dots }
\end{align*}
$$

- ϕ_{P} is formed by,

$$
\begin{equation*}
\phi_{p}=\overline{\mathrm{N}} \overline{\mathrm{a}}=\sum_{i=1}^{n_{\mathrm{p}}} \bar{a}_{\bar{i}} \bar{N}_{\bar{i}} \Rightarrow \frac{\mathrm{~d} \phi_{p}}{\mathrm{~d} x}=\overline{\mathbf{B}} \overline{\mathrm{a}}=\sum_{i=1}^{n_{\mathrm{p}}} \bar{a}_{i} \bar{B}_{\bar{i}} \tag{309}
\end{equation*}
$$

- While this construction guarantees satisfaction of essential boundary conditions at nodes $\overline{1}, \ldots, \overline{n_{\mathrm{p}}}$, as shown in the figure the intermediate values may not match \bar{u}.

Now that we have established how the solution is interpolated, we want to form K, FD, Fr, FN (and a new force En)

$$
\text { 1) } K \text { mania }
$$

$$
n=* \text { Unlchowhs }
$$

的 FEM lo.gnope

$$
D \operatorname{lm}_{\text {mimed }}\left[\phi \ldots \phi_{n}\right) d V
$$

Section
property

$$
\begin{align*}
& K=K^{f f}=\int_{B^{f}}\left(B^{f}\right)^{t} D B^{f} d V \tag{2}\\
& B^{f}=\mathcal{L}_{m} N^{f \text { "disploment to stain }} \begin{array}{l}
\text { mop }
\end{array}
\end{align*}
$$

What abet FD Dirchlel $B C$ force vector Recall
in FEN language
compere this with

$$
K=\int_{\Xi} f_{n}\left[\phi_{\phi_{n}} \int_{1} D \mathcal{l}_{m}\left(\phi_{1}, \ldots \phi_{n}\right) d v\right.
$$

$$
\begin{aligned}
& F_{D} c \int_{\boldsymbol{D}} f_{m}\left(\begin{array}{c}
N_{1} \\
1 \\
N_{n e}
\end{array}\right) D \mathcal{L}_{m}\left(\sum_{i=1}^{n_{p}} a_{i}^{P} N_{i}^{P}\right) d V \\
& =\int_{D} \alpha_{m_{1}}\left[\sum_{N_{n p}}^{N_{1}}\right] D h_{m}\left(\left[N_{1}^{p} \cdots N_{n_{p}}^{p}\left[\begin{array}{c}
a_{1}^{p} \\
1 \\
a_{R_{p}}^{p}
\end{array}\right]\right) d V\right.
\end{aligned}
$$

Summary of $K \& D_{D}$

Numerical example

Bor problem
Slide 252

$n_{f}=4$
$n_{p}=1 \quad a_{p}(=\bar{a})=[1]$
$a=\left(a^{i}\right)=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4}\end{array}\right]=?$ free

$$
\begin{aligned}
& K=\int_{0}^{2} B_{f}^{t} D_{E A} B_{f} d x \\
& B_{f}=\operatorname{Lim}_{m}\left[N_{1} N_{2} N_{3} N_{4}\right] \\
& =\frac{d}{d x}\left[\begin{array}{llll}
N_{1} & N_{2} & N_{3} & N_{4}
\end{array}\right] \\
& =\left[\begin{array}{llll}
N_{1}^{\prime} & N_{2}^{\prime} & N_{3}^{\prime} & N_{4}^{\prime}
\end{array}\right] \quad K_{11}=\int_{0}^{2} B_{1} B_{1} d x=\int_{e_{1}} B_{1} B_{1} d x+\int_{e_{2}} B_{1} B_{1} d \alpha= \\
& \begin{aligned}
K_{12} & =\int_{0}^{2} B_{1} B_{2} d x=\int_{e_{2}} B_{1} B_{2} d x \\
& =\int_{v_{2}}^{1}(-2)(2) d x=-2
\end{aligned} \\
& \frac{B_{1}}{\mid-2}+B_{2} \frac{B_{3}}{} \\
& K=\int_{\alpha}^{2}\left[\begin{array}{l}
B_{1} \\
B_{2} \\
B_{3} \\
B_{4}
\end{array}\right] \underset{E A}{\underset{E A}{1}}\left[\begin{array}{llll}
B_{1} & B_{2} & B_{3} & B_{4}
\end{array}\right] d x
\end{aligned}
$$

Bar Example: Step 1: Stiffness matrix

$$
\begin{align*}
& \mathbf{K}=\left[\begin{array}{cccc}
4 & -2 & 0 & 0 \\
& 4 & -2 & 0 \\
\text { sym. } & & 4 & -2 \\
& & & 2
\end{array}\right] \tag{316}
\end{align*}
$$

