Problem description, slide 253

$F_{D}=k^{f^{\rho}} a^{p}$
$R^{f p}=\int_{a^{2}}\left(B^{p}\right)^{t} D B^{p} d v$

$$
\begin{aligned}
& a_{1}^{P}=[1] \\
& \quad F_{D}=K^{f p} a^{p}=\left[\begin{array}{c}
-2 \\
0 \\
0 \\
0
\end{array}\right)(1)=\left[\begin{array}{c}
-2 \\
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

What is scenario

K and FD are calculated. We want to calculate source term and Neumann BC We break the source term to two parts:

1. Distributed force $->\mathrm{Fr}$
2. Point forces $->\mathrm{Fn}$

$$
\begin{aligned}
& F_{r}=\int_{0}^{2}\left[\begin{array}{c}
N_{1} \\
1 \\
1 \\
N_{4}
\end{array}\right] q d x= \\
& =\left\{\begin{array}{c}
\substack{\int_{0}^{2} N_{1} q d x \\
\int_{0}^{2} N_{2} q d x \\
0 \\
0 \\
0 \\
v_{1}(x)}
\end{array}\right]= \\
& {\left[\begin{array}{l}
\int_{e_{1}}^{N_{1} q d x}+\int_{e_{2}} N_{1} q d x \\
\int_{e_{2} q} N_{2} d x \\
0
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{2} \\
\frac{1}{2} \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Bar Example: Step 2.1: Source term force

From (312a),

$$
\begin{aligned}
\mathbf{F}_{r} & =\int_{0}^{L}\left[\begin{array}{c}
N_{1} \\
\vdots \\
N_{n_{f}}
\end{array}\right] q \mathrm{~d} x=\left[\begin{array}{c}
\int_{0}^{2} N_{1}(x) q(x) \mathrm{d} x \\
\int_{0}^{2} N_{2}(x) q(x) \mathrm{d} x \\
\int_{0}^{2} N_{3}(x) q(x) \mathrm{d} x \\
\int_{0}^{2} N_{4}(x) q(x) \mathrm{d} x
\end{array}\right]=\left[\begin{array}{c}
\int_{e_{1}} N_{1}(x) q(x) \mathrm{d} x+\int_{e_{2}} N_{1}(x) q(x) \mathrm{d} x \\
\int_{e_{2}} N_{2}(x) q(x) \mathrm{d} x \\
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{1 / 2}{6}((2) \cdot(0) \cdot(2)+(2) \cdot(1) \cdot(1)+(0) \cdot(1)+(1) \cdot(2))+\frac{1 / 2}{6}((2) \cdot(1) \cdot(1)+(2) \cdot(0) \cdot(0)+(1) \cdot(0)+(0) \cdot(1)) \\
\frac{1 / 2}{6}((2) \cdot(0) \cdot(1)+(2) \cdot(1) \cdot(0)+(0) \cdot(0)+(1) \cdot(1)) \\
0 \\
0
\end{array}\right.
\end{aligned}
$$

In 1D problems, Neumann BC will be a (collection of) points So we treat it as a point force

$$
q^{q^{*}(x)}=\underbrace{\frac{1}{4} \delta\left(x-\frac{1}{2}\right)}+\frac{1}{2} \delta\left(x-\frac{3}{2}\right)
$$

$255 / 456$

$$
\begin{aligned}
y(x)= & \underbrace{\frac{1}{4} \partial\left(x-\frac{1}{2}\right)}_{F_{n_{1}} \delta\left(x-x_{n_{1}}\right)}+\frac{1}{2} \delta\left(x-\frac{3}{2}\right) \\
& +\frac{1}{4} \delta(x-2) \\
F_{n} & =\int_{0}^{2}\left[\begin{array}{l}
N_{1} \\
N_{2} \\
N_{3} \\
N_{4}
\end{array}\right) q^{p h}(x) d x=\int_{0}^{2}\left[\begin{array}{l}
N_{1} \\
N_{2} \\
N_{3} \\
N_{4}
\end{array}\right]\left[\frac{1}{4} \delta\left(x-\frac{1}{2}\right)+\frac{1}{2} \delta\left(x-\frac{3}{2}\right)+\frac{1}{4} \delta(x-2)\right.
\end{aligned}
$$

nodal force vector
Example $\left(F_{n}\right)_{1}$

$$
\begin{aligned}
& =\int_{0}^{2} N_{1}\left[\frac{1}{4} \delta\left(x-\frac{1}{2}\right)+\frac{1}{2} \delta\left(x-\frac{3}{2}\right)+\frac{1}{4} \delta(x-2)\right] d x \\
& =\frac{1}{4} N_{1} \underbrace{n_{1}}_{\left.n_{1}^{\left(\frac{1}{2}\right.}\right)}+\frac{1}{2} N_{1} \underbrace{\left(\frac{3}{2}\right)}_{0}+\underbrace{4}_{n_{3}}+\underbrace{N_{1}(2)}_{0} \underbrace{n_{4}}_{0}
\end{aligned}
$$

$$
\int_{0}^{2} f(x) \delta(x-\underbrace{\frac{1}{2}}_{x_{0}}) d x=f(\underbrace{\frac{1}{2}}_{\left(x_{0}\right)})
$$

$=\frac{1}{4}=F_{1}=\frac{1}{4}$ nodal force (a) node. 1

$$
\left(F_{n}\right)_{2}=F_{2}=0 \quad\left(F_{n}\right)_{3}=F_{3}=\frac{1}{2}
$$

$$
\left(F_{n}\right)_{4}=F_{4}=\frac{1}{4} \quad F_{n}=\left(\begin{array}{c}
\frac{1}{4} \\
\frac{0}{2} \\
\frac{1}{4}
\end{array}\right)
$$

For any problem F_{n} is the collection of nodal "farces"

$$
\left(F_{n}\right)_{\delta X 1}=\left|\begin{array}{c}
0 \\
0 \\
0 \\
F_{4} \\
0 \\
0
\end{array}\right| \begin{gathered}
\text { healing } \\
\text { source }
\end{gathered}
$$

ID ar s problem

In TD well not form FR\& include is in F_{n}

$$
\begin{aligned}
& K=\left|\begin{array}{cccc}
2 & -2 & 0 & 0 \\
-2 & 4 & -2 & 0 \\
0 & -2 & 4 & -2 \\
0 & 0 & -2 & 4
\end{array}\right| F=F_{n}+F^{2}+F_{\sigma}-F_{D} \\
&=\left[\begin{array}{c}
\frac{1}{4} \\
0 \\
\frac{1}{2} \\
1
\end{array} \left\lvert\,+\left(\begin{array}{c}
\frac{1}{6} \\
1 / 12 \\
0
\end{array} \left\lvert\,-\left[\begin{array} { c }
{ - 2 } \\
{ 0 } \\
{ 0 } \\
{ 1 }
\end{array} \left|=\left|\begin{array}{c}
\frac{1}{4} \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right|\right.\right.\right.\right.\right.\right. \\
&\left|\begin{array}{c}
4^{3} / 24 \\
52 / 24
\end{array}\right|
\end{aligned}
$$

$$
\binom{\frac{1}{2}}{\frac{1}{4}}^{1}\binom{0}{0}^{-}\binom{0}{0}^{=}\left(\begin{array}{l}
1-1 \\
\frac{1}{2} \\
\frac{1}{4}
\end{array}\right)
$$

Bar Example: FEM Solution

- From (311) we have

$$
\mathbf{F}=\mathbf{F}_{r}+\mathbf{F}_{N}+\mathbf{F}_{n}-\mathbf{F}_{D}
$$

- Obtaining the individual values from (317), (318), (319), and (320) we obtain,

$$
\mathbf{F}=\mathbf{F}_{r}+\mathbf{F}_{N}+\mathbf{F}_{n}-\mathbf{F}_{D}=\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{12} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
\frac{1}{4}
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{4} \\
0 \\
\frac{1}{2} \\
0
\end{array}\right]-\left[\begin{array}{c}
-2 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{11}{4} \\
\frac{1}{12} \\
\frac{1}{2} \\
\frac{1}{4}
\end{array}\right]
$$

- Recalling the value for the stiffness matrix (316) and $\mathbf{K a}=\mathbf{F}$ we obtain,

$$
\mathbf{K}=\left[\begin{array}{cccc}
4 & -2 & 0 & 0 \tag{321}\\
& 4 & -2 & 0 \\
\text { sym. } & & 4 & -2 \\
& & & 2
\end{array}\right], \quad \mathbf{F}=\left[\begin{array}{c}
\frac{11}{4} \\
\frac{1}{12} \\
\frac{1}{2} \\
\frac{1}{4}
\end{array}\right] \Rightarrow \mathbf{a}=\left[\begin{array}{c}
\frac{43}{24} \\
\frac{53}{24} \\
\frac{31}{12} \\
\frac{65}{24}
\end{array}\right]
$$

$$
\begin{aligned}
& l^{h}\left(n_{2}\right)=क_{p}\left(n_{2}\right)+\sum_{i=1}^{x} a_{i} N_{i}\left(n_{2}\right) \\
& =a_{1} N_{1}\left(n_{2}\right)+a_{1} N_{1}\left(n_{2}\right)+a_{2} N_{2}\left(n_{2}\right) \\
& +a_{3} N_{3}\left(n_{2}\right)+a_{4} N_{4}\left(n_{2}\right) \\
& 0
\end{aligned}
$$

$$
=a_{2}
$$

$259 / 456$
$u^{h}\left(n_{j}\right)=a_{j}$

$$
N_{i}\left(n_{j}\right)=\delta_{j}
$$

Bar Example: solution values

- u^{h} and u match at all nodes $n_{0}, n_{1}, n_{2}, n_{3}$, and n_{4}. This holds for 1D solid elements with uniform $A E$ and does not hold in general.

$$
262 / 456
$$

Bar Example: error in solution values
$\log 8 \mathrm{c}$

- As mentioned before, the solution error at all nodes $n_{0}, n_{1}, n_{2}, n_{3}$, and n_{4} is zero. This does not hold in general for FEM method.

Bar Example: solution derivatives (\propto axial force)

- The errors in solution derivative is larger than those in the solution itself. In general, the accuracy of FE solution decreases for solution derivatives (e.g., strains, stresses, etc.).
- Approximate solution u^{h} exhibits jumps in $\frac{\mathrm{d} u^{h}}{\mathrm{~d} x}$ at all interior nodes. This is because the solution is piece-wise constant in $H^{1}\left(\left[\begin{array}{ll}0 & 2\end{array}\right]\right)$.
- Even the exact solution exhibits jumps in $\frac{\mathrm{du}}{\mathrm{d} x}$ at n_{1} and n_{3} from the concentrated forces.
- The $H^{1}\left(\left[\begin{array}{ll}0\end{array}\right]\right)$, rather than $C^{1}\left(\left[\begin{array}{ll}{[} & 2\end{array}\right]\right.$, is the right solution space for u and u^{h} as none of them belong to the latter space.

Global shape functions to element shape functions

- Finite Elements are the domain subdivisions that are used for the construction of the shape functions
- Restriction of (global) shape functions to elements form the elements' shape functions (local).
- To distinguish element level and global level quantities, any element level value is decorated by (. $)^{e}$.
- Local node numbers in the element start from 1 to number of nodes in element n_{n}^{e} and are denoted by $n_{1}^{e}, \ldots, n_{n_{n}^{e}}^{e}$.
- Similarly local don start from 1 to the number of dof in element $n_{\text {def }}^{e}$.
- For example in the figure both n_{n}^{e} and $n_{\text {doff }}^{e}$ are both 2 and the range for local node number and dof is from 1 to 2 .
- Element shape functions satisfy the condition,

$$
\begin{equation*}
N_{i}^{e}\left(n_{j}^{e}\right)=\delta_{i j} \tag{325}
\end{equation*}
$$

- More generally (egg., beam elements), shape function i has a value 1 at oof i while has a value zero at all other element dons.

Calculating the stiffness matrix using the element-centered approach:

Local approach (element-centered)

$$
\begin{aligned}
\underbrace{}_{0}
\end{aligned}
$$

(327)

$$
\begin{aligned}
& =\int_{e_{3}}\left[\begin{array}{c}
0 \\
B_{2} \\
B_{3} \\
0
\end{array}\right]\left[\begin{array}{llll}
0 & B_{2} & B_{3} & 0
\end{array}\right] d x= \\
& \int_{e_{3}}\left[\begin{array}{c}
6 \\
-2 \\
2
\end{array}\right]\left[\begin{array}{llll}
0 & -2 & 2 & 0
\end{array}\right] d x \\
& =\frac{1}{2}\left[\begin{array}{c}
0 \\
-2 \\
2 \\
0
\end{array}\right]\left[\begin{array}{llll}
0 & -2 & 2 & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 2 & -2 & 0 \\
0 & -2 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Local approach (element-centered)

$$
\begin{aligned}
& -2 \underbrace{\cdots \cdots \cdots}_{B_{0}} \underbrace{}_{B_{1}} \\
& \left.\begin{array}{c}
2-2(\\
K_{-} \\
\mathbf{K}^{e_{1}}=\left[\begin{array}{cccc}
2 & B_{0} & B_{1} & B_{2}
\end{array} B_{3}\right. \\
\\
\text { sym. } \\
\\
0
\end{array}\right) \\
& \mathbf{K}^{e_{3}}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 2 & -2 & 0 \\
\text { sym. } & & 2 & 0 \\
& & & 0
\end{array}\right] \quad \mathbf{K}^{e_{4}}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
& 0 & 0 & 0 \\
\text { sym. } & & 2 & -2 \\
& & & 2
\end{array}\right] \\
& \mathbf{K}=\mathrm{K}^{e_{1}}+\mathrm{K}^{e_{2}}+\mathrm{K}^{e_{3}}+\mathrm{K}^{e_{4}} \quad \Rightarrow \\
& \mathbf{K}=\left[\begin{array}{cccc}
4 & -2 & 0 & 0 \\
& 4 & -2 & 0 \\
\text { sym. } & & 4 & -2 \\
& & & 2
\end{array}\right]
\end{aligned}
$$

