2023/10/30 Friday, October 27, 2023 9:52 AM

Continuing the local FEM approach

To fully utilize the element-centered (local) approach, we need to define 2 maps:

So, this matches with values we computed last time by integrating BT D B term over elements 1 to 4:

Local approach (element-centered)

$$K = \int_{0}^{2} B^{T} EAB dx = \frac{1}{2e_{1}} \frac{e_{2}}{B_{1}} \frac{e_{1}}{B_{2}} \frac{e_{2}}{B_{3}} \frac{e_{1}}{B_{3}} \frac{e_{2}}{B_{3}} \frac{e_{2}}{B_{3}} \frac{e_{2}}{B_{4}} \frac{e_{1}}{x} = 2}{B_{0}} \frac{e_{1}}{B_{1}} \frac{e_{2}}{B_{2}} \frac{e_{2}}{B_{3}} \frac{e_{2}}{B_{3}} \frac{e_{4}}{B_{4}} \frac{e_{2}}{A} \frac{e_{4}}{A} \frac{e_{2}}{B_{3}} \frac{e_{4}}{B_{4}} \frac{e_{2}}{A} \frac{e_{4}}{B_{4}} \frac{e_{2}}{B_{3}} \frac{e_{4}}{B_{4}} \frac{e_{2}}{B_{4}} \frac{e_{4}}{B_{4}} \frac{e_{4}}{B$$

271/456

Local approach (element-centered)

$$\mathbf{K}^{e_{1}} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ sym. & 0 & 0 \\ 0 & 2 & -2 & 0 \\ sym. & 2 & 0 \\ sym. & 2 & 0 \\ 0 \end{bmatrix} \qquad \mathbf{K}^{e_{2}} = \begin{bmatrix} 2 & -2 & 0 & 0 \\ 2 & 0 & 0 \\ sym. & 0 & 0 \\ sym. & 0 & 0 \\ sym. & 2 & 0 \\ 0 \end{bmatrix} \qquad \mathbf{K}^{e_{4}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ sym. & 2 & -2 \\ sym. & 2 & 0 \\ sym. & 2 & 0 \\ sym. & 2 & -2 \\ sym. & 2 & 0 \\ sym. & 2 & -2 \\ sym. & 4 & -2 \\ sym. & 4 & -2 \\ sym. & 2 & -2 \\ sym. & 2 & -2 \\ sym. & 4 & -2 \\ sym. & 2 & -2 \\ sym. & 2 & -2 \\ sym. & 4 & -2 \\ sym. & 2 & -2 \\ sym. & 3 & -2 \\$$

Comparing global versus local approaches:

272 / 456

Comparing global versus local approaches: A doal (node-centured) approach $K = K^{ff} =$ $\int B^{f}_{a} D B^{f}_{a} dv$ growe can drop f superscription $<math>F_{e} = F_{e} + F_{N} - F_{D}$ $F_{e} = F_{e} + F_{N} - F_{D}$ $f_{e} = f_{e}^{e} + f_{N} - f_{D}^{e}$ $f_{e} = f_{e}^{e} + f_{N} - f_{D}^{e}$ $f_{e} = f_{e}^{e} + f_{N} - f_{D}^{e}$

ME517 Page 5

ME517 Page 6

$$f_{1} \rightarrow \int_{x_{1}} \left(N_{2}^{e}\right)^{1} \left(X_{1}^{e} - N_{2}^{A}\right) \left(\frac{y_{1}}{y_{2}}\right) dx = \int_{x_{1}}^{x_{1}} \left(N_{1}^{e} - N_{2}^{A}\right) \left(\frac{y_{1}}{y_{2}}\right) dx = \int_{x_{1}}^{x_{1}} \left(N_{1}^{e} - N_{2}^{e}\right) dx = \int_{x_{1}}^{y_{1}} \left(N_{1}^{e} - N_{2}^{e}\right) dx = \int_{x_{1}}^{y_{1}} \left(N_{1}^{e} - N_{2}^{e}\right) dx = \int_{x_{1}}^{x_{1}+x_{1}} \left(\sum_{l=1}^{x_{l+1}-x_{l}}\right) \left(\sum_{l=1}^{x_{l+1}-x_{l}}\right) \left(\sum_{l=1}^{x_{l+1}-x_{l}}\right) \left(\sum_{l=1}^{x_{l+1}-x_{l}}\right) dx = \int_{x_{1}}^{x_{1}+x_{1}} \left(\sum_{l=1}^{x_{1}+x_{l}}\right) \left(\sum_{l=1}^{x_{1}+x_{l}}\right) dx = \int_{x_{1}}^{x_{1}+x_{1}} dx = \int_{x_{1}}^{x_{1}$$

Solve the sample problem with the local approach: We already solved for K

Example: Formation of ${\bf K}$ and ${\bf F}$

1 Local stiffness matrix: Since $A = 1, E = 1, L = \frac{1}{2}$ for all elements in the example shown, local stiffness matrix is:

$$\mathbf{k}^{e_i} = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}, i = 1, 2, 3, 4.$$

Assembly to global system: Around the local stiffness matrix for e₃ we have the corresponding dof of the local dof in the global system:

 $\begin{array}{ccc}
2 & 3 \\
2 & -2 \\
3 & -2 & 2
\end{array}$

This means that for example $k_{11}^{e_3}$ will be added to K_{22} , $k_{12}^{e_3}$ to K_{23} and so forth:

$$\mathbf{K}^{e_3} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & -2 & 0 \\ \text{sym.} & 2 & 0 \\ & & & 0 \end{bmatrix}$$

274 / 456

Assembly of global system: Bar example

Calababeer
$$a_{1}$$
 a_{1} a_{2} a_{3} a_{4}
 e_{1} e_{2} e_{3} e_{4}
 $f_{D}^{e_{1}} = K a a^{e_{1}} a^{e_{1}} A^{e_{1}} = \begin{bmatrix} a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} a_{1}$

