Final step of the last example: Calculate the reaction forces Ill only do the element calculations for ez here

$$
\begin{aligned}
& F^{l_{3}}=k^{23 a^{23}} \sim^{e_{3}} \\
& =\left[\begin{array}{c}
\text { 221-221 }-\cdots \\
\square \\
-.2123 \\
0.2988
\end{array}\right]=\left[\begin{array}{c}
0.5 \\
-.5714 \\
.5714 \\
-.5714
\end{array}\right]
\end{aligned}
$$

Truss Example: Reaction Forces

- First, we compute reaction forces by adding up forces from individual elements that contribute to reaction forces:

$$
\begin{align*}
& R_{1}^{2}=f_{1}^{e_{1}}+f_{1}^{e_{2}}=0+0.5715=0.5715 \tag{397a}\\
& R_{1}^{3}=f_{3}^{e_{1}}+f_{1}^{e_{3}}=0+-0.5714=-0.5714 \tag{397b}\\
& R_{2}^{3}=f_{4}^{e_{1}}+f_{2}^{e_{3}}=0.4285+0.5714=0.9999 \tag{397c}
\end{align*}
$$

$325 / 456$
Assembly of free + prescribed dofs vs. free only

- All we covered so far was the assembly of free don only.
- We can assemble all dofs (free + prescribed) as shown in figure on the left.
- The numbering of dor when assembling free + prescribed dof is exactly like before with the difference that we first number free dof followed by prescribed dof as shown in the figure. For each group ($\mathrm{f} \& \mathrm{p}$) we start from node n_{1} to $n_{n_{\mathrm{n}}}$.

$$
\begin{aligned}
& F_{f}=k_{f f} U_{f}+k_{f p} U_{p} \rightarrow U_{f}=k_{f f}^{-1}\left(F_{f}-k_{f p} U_{p}\right) \\
& F_{p}=k_{p} U_{p}+k_{p p} U_{p} \\
& \tilde{K}=K_{p p}-K_{p f} K_{f f}^{\prime} K_{f p}
\end{aligned}
$$

What abate the shape functions for y at $n i$

FEM formulation of beam elements: Shape functions

$$
\left.\left.\sum_{i=1,2(3,4}^{N_{i}(s)=} \alpha_{0}+\alpha_{1} \xi+\alpha_{2}\right\}^{2}+\alpha_{3}\right\}^{3}
$$

each shape function needs to satisfy 4 eqny

$$
r / s)-x \cdot N_{1}^{2}(r)+X N^{L}(r)
$$

$$
\begin{aligned}
x(\xi) & =\underbrace{X_{i}}_{X_{n_{1}}} N_{1}^{L}(\xi)+X_{i+1} N_{2}^{L}(\xi) \\
& \left.=X_{\text {are }}+\frac{L_{e}}{2}\right\}
\end{aligned}
$$

We see that the geometry (x) and solution $(\mathrm{y}(\mathrm{x})$) are both interpolated by shape functions, but for x NL (order 2) for solution N of order 4 is used.

Now we want to derive formulas for N1 to N4

$$
\begin{aligned}
& \left.N_{2}(\xi)=\alpha_{0}+\alpha_{1} \xi+\alpha_{2} \xi^{2}+\alpha_{3}\right\}^{N_{2}} \\
& \frac{d N_{2}(\xi)}{d \xi}=\alpha_{1}+2 \alpha_{2} \xi+3 \alpha_{3} \xi^{2} \\
& \left.\begin{array}{l}
\frac{d N_{2}}{d x}=\frac{d N_{2}}{d \xi} \frac{d \xi}{d x}=\frac{d N_{2}}{d \xi} \frac{1}{d x} \\
x(\xi)=x_{\text {are }}+\frac{L_{e}}{2} \xi \rightarrow J=\frac{d x}{d \xi}=\frac{L_{e}}{2}
\end{array}\right\} \rightarrow \\
& \underbrace{s=1}_{j=1} \\
& N_{2}(\xi=-1)=0 \\
& \begin{array}{l}
\frac{d N_{2}}{d x}(\xi=-1)=1 \\
N_{2}(\xi=1)=0 \\
\frac{d N_{2}}{d x}(\xi=1)=0
\end{array} \rightarrow \\
& \frac{d w_{2}}{d x}=\frac{2}{L_{e}}\left(\alpha_{1}+2 \alpha_{2} \xi+3 \alpha_{3} \xi^{2}\right) \\
& \left\{\begin{array}{l}
\alpha_{0}+(-1) \alpha_{1}+(-1)^{2} \alpha_{2}+(-1)^{3} \alpha_{3}=0 \\
\frac{2}{L_{e}}\left(0 \alpha_{0}+1 \alpha_{1}+2(-1) \alpha_{2}+3(-1)^{2} \alpha_{3}=1\right. \\
\alpha_{0}+\alpha_{1}+\alpha_{2}+\alpha_{3}=0 \\
\frac{2}{L_{e}}\left(0 \alpha_{1}+\mid \alpha_{1}+2 \alpha_{2}+3 \alpha_{3}\right)=0
\end{array}\right.
\end{aligned}
$$

FEM formulation of beam elements: Shape functions

- Shape function N_{i} take the value of 1 at dof i and zero elsewhere:

$$
\begin{array}{llllllll}
N_{1}(\xi=-1) & =1 & \frac{\mathrm{~d} N_{1}}{\mathrm{~d}}(\xi=-1) & =0 & N_{1}(\xi=1) & =0 & \frac{\mathrm{~d} N_{1}}{\mathrm{~d}}(\xi=1) & =0 \\
N_{2}(\xi=-1) & =0 & \frac{\mathrm{~d} N_{2}}{}(\xi=-1) & =1 & N_{2}(\xi=1) & =0 & \frac{\mathrm{~d} N_{2}}{\mathrm{~d}}(\xi=1) & =0 \\
N_{3}(\xi=-1) & =0 & \frac{\mathrm{~d} N_{3}}{\mathrm{~d}}(\xi=-1) & =0 & N_{3}(\xi=1) & =1 & \frac{\mathrm{~d} N_{3}}{\mathrm{~d}}(\xi=1) & =0 \tag{417}\\
N_{4}(\xi=-1) & =0 & \frac{\mathrm{~d} N_{4}}{}(\xi=-1)=0 & N_{4}(\xi=1) & =0 & \frac{\mathrm{~d} N_{4}}{}(\xi=1) & =1
\end{array}
$$

- Similar to bar element, since N_{i} are expressed in terms of ξ we need to transfer $\frac{\mathrm{d} N_{i}}{\mathrm{~d} \xi}$ to $\frac{\mathrm{d} N_{4}}{\mathrm{~d} x}(c f .(415))$:

$$
\begin{equation*}
\mathrm{d} x=\frac{L^{e}}{2} \mathrm{~d} \xi \Rightarrow \frac{\mathrm{~d} N_{i}}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} N_{i}}{\mathrm{~d} \xi}}{\frac{\mathrm{~d} x}{\mathrm{~d} \xi}} \Rightarrow \frac{\mathrm{~d} N_{i}}{\mathrm{~d} x}=\frac{2}{L^{e}} \frac{\mathrm{~d} N_{i}}{\mathrm{~d} \xi}, \quad \frac{\mathrm{~d} N_{i}}{\mathrm{~d} \xi}=\frac{L^{e}}{2} \frac{\mathrm{~d} N_{i}}{\mathrm{~d} x} \tag{418}
\end{equation*}
$$

FEM formulation of beam elements: Shape functions

- From (417) and (418) we get:
$\begin{array}{llllllll}N_{1}(\xi=-1) & =1 & \frac{\mathrm{~d} N_{1}}{\mathrm{~d} \xi}(\xi=-1) & =0 & N_{1}(\xi=1) & =0 & \frac{\mathrm{~d} N_{1}}{\mathrm{~d} \xi}(\xi=1) & =0 \\ N_{2}(\xi=-1) & =0 & \frac{\mathrm{~d} N_{2}}{\mathrm{~d} \xi}(\xi=-1) & =\frac{L^{e}}{2} & N_{2}(\xi=1) & =0 & \frac{\mathrm{~d} N_{2}}{\mathrm{~d} \xi}(\xi=1) & =0 \\ N_{3}(\xi=-1) & =0 & \frac{\mathrm{~d} N_{3}}{\mathrm{~d} \xi}(\xi=-1) & =0 & N_{3}(\xi=1) & =1 & \frac{\mathrm{~d} N_{3}}{\mathrm{~d} \xi}(\xi=1) & =0 \\ N_{4}(\xi=-1) & =0 & \frac{\mathrm{~d} N_{4}}{\mathrm{~d} \xi}(\xi=-1) & =0 & N_{4}(\xi=1) & =0 & \frac{\mathrm{~d} N_{4}}{\mathrm{~d} \xi}(\xi=1) & =\frac{L^{e}}{2}\end{array}$
- Since each N_{i} has four conditions, we interpolate them with cubic polynomials:

$$
\begin{equation*}
N_{i}=\alpha_{0}+\alpha_{1} \xi+\alpha_{2} \xi^{2}+\alpha_{3} \xi^{3} \Rightarrow \frac{\mathrm{~d} N_{i}}{\mathrm{~d} \xi}=\alpha_{1}+2 \alpha_{2} \xi+3 \alpha_{3} \xi^{2} \tag{420}
\end{equation*}
$$

α_{j} are determined from the conditions in (419).
$346 / 456$

FEM formulation of beam elements: Shape functions

- For example, to determine N_{1} from (419) and (420) we observe:

$$
\begin{array}{r}
\left.\left.\begin{array}{rr}
N_{1}(\xi=-1) & =1 \\
\frac{\mathrm{~d} N_{1}}{\mathrm{~d} \xi}(\xi=-1) & =0 \\
N_{1}(\xi=1) & =0 \\
\frac{\mathrm{~d} N_{1}}{\mathrm{~d} \xi}(\xi=1) & =0
\end{array}\right\} \Rightarrow \begin{array}{rr}
\alpha_{0}-\alpha_{1}+\alpha_{2}-\alpha_{3} & =1 \\
\alpha_{1}-2 \alpha_{2}+3 \alpha_{3} & =0 \\
\alpha_{0}+\alpha_{1}+\alpha_{2}+\alpha_{3} & =0 \\
\alpha_{1}+2 \alpha_{2}+3 \alpha_{3} & =0
\end{array}\right\} \Rightarrow\left[\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{3}{4} \\
0 \\
\frac{1}{4}
\end{array}\right] \\
N_{1}(\xi)=\frac{1}{4}\left(2-3 \xi+\xi^{3}\right)
\end{array}
$$

- Similarly for N_{2} :

$$
\begin{aligned}
& \left.\left.\left.\begin{array}{rl}
N_{2}(\xi=-1) & =0 \\
\frac{\mathrm{~d} N_{2}}{\mathrm{~d} \xi}(\xi=-1) & =\frac{L^{e}}{2} \\
N_{2}(\xi=1) & =0 \\
\frac{\mathrm{~d} N_{2}}{\mathrm{~d} \xi}(\xi=1) & =0
\end{array}\right\} \Rightarrow \begin{array}{rl}
\alpha_{0}-\alpha_{1}+\alpha_{2}-\alpha_{3} & =0 \\
\alpha_{1}-2 \alpha_{2}+3 \alpha_{3} & =\frac{L^{e}}{2} \\
\alpha_{0}+\alpha_{1}+\alpha_{2}+\alpha_{3} & =0 \\
\alpha_{1}+2 \alpha_{2}+3 \alpha_{3} & =0
\end{array}\right\} \Rightarrow\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]=\frac{L^{e}}{8}\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right]\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1} \\
N_{2}(\xi)=\frac{L^{e}}{8}\left(1-\xi-\xi^{2}+\xi^{3}\right) \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right] \begin{array}{c}
\frac{\lfloor }{8} \\
-1 \\
-1 \\
-1
\end{array}\right]
\end{aligned}
$$

we did this above

$$
N_{2}(f)=\frac{L^{2}}{8}\left(1-\xi-\xi^{2}+\xi^{3}\right)=\alpha_{0}+\alpha_{1} \delta+\alpha_{2} \xi^{x}+\alpha_{3} \xi^{3}
$$

FEM formulation of beam elements: Shape functions

$$
N_{1}^{e}(\xi)=\frac{1}{4}(1-\xi)^{2}(2+\xi)
$$

$N_{2}^{e}(\xi)=\frac{l_{e}}{8}(1-\xi)^{2}(1+\xi)$

- Shape functions of Node 2

$$
N_{3}^{\epsilon}(\xi)=\frac{1}{4}(1+\xi)^{2}(2-\xi)
$$

$$
N_{4}^{\epsilon}(\xi)=\frac{l_{e}}{8}(1+\xi)^{2}(\xi-1)
$$

figure from F. Cirak
wale

$$
\begin{gathered}
\int w^{N} \sum_{D}^{E} y^{\prime N} d x \\
\left.L_{M} C\right)^{N} \\
B \circ N^{\prime \prime}\left(\frac{d N}{d x^{2}}\right)
\end{gathered}
$$

$$
B=\left[B_{1} B_{2} B_{3} B_{4}\right)=\frac{d^{2}}{d x^{2}}\left[N_{1}(\xi) N_{2}(\xi) N_{3}(\xi) \quad N_{4}(\xi)\right]
$$

For example $B_{2}=\frac{d^{2}}{d x^{2}} N_{2}(\xi)=\frac{d}{d x}\left(\frac{d}{d x} N_{2}(\xi)\right)=\frac{d}{d x}\left(\frac{d N_{2}(\xi)}{d \xi} \frac{1}{\left(\frac{d x}{d s}\right.}\right)$

$$
\begin{equation*}
=\underset{\substack{\sum_{\text {cons }}}}{ } \frac{1}{\delta} \frac{d}{d x}\left(\frac{d N_{2}(\xi)}{d \xi}\right)=\frac{1}{\delta}\left(\frac{d N_{2}(\xi)}{d \xi^{2}} \frac{1}{\frac{d x}{d \xi}}\right)=\frac{1}{J^{2}} \frac{d^{2} N}{d \xi^{2}} \tag{1}
\end{equation*}
$$ conibhan: $=\frac{L_{e}}{2}$

do this for other N's

$$
\begin{aligned}
& N_{2}(\xi)=\frac{L_{e}}{8}\left(1-\xi-\xi^{2}+\xi^{3}\right) \quad \frac{d N_{2}}{d \xi^{s}}(\xi)=\frac{2 e}{8}\left(-1-2 \xi+3 \xi^{c}\right) \\
& \rightarrow B_{\xi_{2}}=\frac{d^{2} N_{2}(s)}{\lambda_{\xi^{2}}}=\frac{L e}{8}\left(-2 t-6 s^{2}\right) \\
& B_{2}(\delta)=\frac{1}{\delta^{2}}\left(B_{\xi_{2}}\right)=\frac{1}{\left(\frac{L_{e}}{2}\right)^{2}} \frac{L_{e}}{8}(65-2)=\frac{3 \xi-1}{L_{e}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { L/2 }
\end{aligned}
$$

$$
\begin{aligned}
& J=\frac{d x}{d S}=\frac{L e}{2}
\end{aligned}
$$

$$
K_{4 \times x}^{e}=\int_{-1}^{1} B(s) E J(\xi) B(s) \frac{\sqrt[4]{2}}{d} d \xi
$$

FEM formulation of beam elements: Stiffness matrix

- From (424) and (425) we have,

$$
\mathbf{k}^{e}=\frac{1}{2 L^{e}} \int_{-1}^{1}\left[\begin{array}{c}
\frac{6 \xi}{L^{e}} \tag{426}\\
-1+3 \xi \\
-\frac{6 \xi}{L^{e}} \\
1+3 \xi
\end{array}\right] E(\xi) I(\xi)\left[\begin{array}{llll}
\frac{6 \xi}{L^{e}} & -1+3 \xi & -\frac{6 \xi}{L^{e}} & 1+3 \xi
\end{array}\right] \mathrm{d} \xi
$$

- If E and I are constant, we can take those out of the equation and have:

$$
\mathbf{k}^{e}=\frac{E I}{L^{e^{3}}}\left[\begin{array}{cccc}
12 & 6 L^{e} & -12 & 6 L^{e} \tag{427}\\
& 4 L^{e^{2}} & -6 L^{e} & 2 L^{e^{2}} \\
& & 12 & -6 L^{e} \\
\text { sym. } & & & 4 L^{e^{2}}
\end{array}\right] \quad \text { for constant } E \text { and } I
$$

$\left(f_{r}^{e}\right)_{4 \times 1}=(r e)_{4 \times 2}\left[\begin{array}{l}q_{1} \\ q_{2}\end{array}\right]^{\prime}$

Beam elements: Forces: A. Source term forces

linear (approximation) q

then the source term force is:

$\xrightarrow[-1]{+} \stackrel{+}{\stackrel{\text { ¢ }}{\longrightarrow}}$

$\mathbf{f}_{r}^{e} \approx \int_{-1}^{1} \mathbf{N}^{e}(\xi)^{\mathrm{T}} \cdot \tilde{q}(\xi) \frac{L^{e}}{2} \mathrm{~d} \xi=\mathbf{r}^{e}\left[\begin{array}{l}q_{1} \\ q_{2}\end{array}\right] \quad$ where
$\mathbf{r}^{e}=\frac{L^{e}}{2} \int_{-1}^{1} \mathbf{N}^{e}(\xi)^{\mathrm{T}} \cdot \mathbf{N}_{L}^{e}(\xi) \mathrm{d} \xi=\frac{L^{e}}{2} \int_{-1}^{1}\left[\begin{array}{c}\frac{1}{4}\left(2-3 \xi+\xi^{3}\right) \\ \frac{L^{e}}{8}\left(1-\xi-\xi^{2}+\xi^{3}\right) \\ \frac{1}{4}\left(2+3 \xi-\xi^{3}\right) \\ \frac{L^{e}}{8}\left(-1-\xi+\xi^{2}+\xi^{3}\right)\end{array}\right] \cdot\left[\begin{array}{ll}\frac{1-\xi}{2} & \left.\frac{1+\xi}{2}\right] \mathrm{d} \xi \quad \Rightarrow \\ \hline\end{array}\right.$

$$
\mathbf{f}_{r}^{e} \approx \mathbf{r}^{e}\left[\begin{array}{l}
q_{1} \tag{433}\\
q_{2}
\end{array}\right] \quad \text { where } \mathbf{r}^{e}=L^{e}\left[\begin{array}{cc}
\frac{7}{20} & \frac{3}{20} \\
\frac{1}{20} L^{e} & \frac{1}{30} L^{e} \\
\frac{3}{20} & \frac{7}{20} \\
-\frac{1}{30} L^{e} & -\frac{1}{20} L^{e}
\end{array}\right] \quad \text { exact for linear } q
$$

q_{1} and q_{2} are shown in the right figure. For constant $q(x)=\bar{q}, q_{1}=q_{2}=\bar{q}$, from (433) we get:

$$
\mathbf{f}_{r}^{e}=\mathbf{r}^{e}\left[\begin{array}{c}
\bar{q} \tag{434}\\
\bar{q}
\end{array}\right]=\left[\begin{array}{c}
\frac{\bar{q} L^{e}}{2} \\
\frac{\bar{q} L^{e 2}}{12} \\
\frac{\bar{q} L^{e}}{2} \\
-\frac{\bar{q} L^{e 2}}{12}
\end{array}\right] \quad \text { constant } q(x)=\bar{q}
$$

