Newton-Cotes method continued Simpson's rule

Why?
Ill demonstrate this for ξ coordinate

$$
\int_{-1}^{1} f(\xi) d \xi=\underset{(1-(-1))}{\left(\omega_{1} f(-1)+\omega_{2} f(0)+\omega_{3} f(1)\right)}
$$

We have 3 unknowns wi to wi: we need 3 equations to solve for $w 1$ to w3
How about requiring that we integrate certain polynomials exactly?

$$
f(\xi)=\frac{\alpha_{0}}{\left.\left.\frac{e q n}{\text { vq2 }}+\alpha_{1}\right\}+\alpha_{2} \xi^{2}+\alpha_{3}\right\}^{3}+-}
$$

need to ensure $1,\left\{, \xi^{2}\right.$ are integrated exactly (Using eqn (1))

$$
\xrightarrow{f(\xi)=\xi^{2} \downarrow \underset{\substack{-1}}{\int_{1}^{1} \xi^{2} d \xi}=2\left(\omega_{1} f(-1)+\omega_{2} f(0)+\omega_{3} f(1)\right)}=\underset{(-1)^{2}}{(6)^{2}}\left(\omega_{3}+\omega_{1}\right)=2 f_{0}^{1} \xi^{2} \xi^{2}=\left.\frac{2}{3} \xi^{3}\right|_{0} ^{1}=\frac{2}{3}
$$

(ii) $\sqrt{\omega_{3}+\omega_{1}}=\frac{1}{3}$

$$
\begin{aligned}
& i i \& i i \\
& i \longrightarrow \omega_{1}=\omega_{3}=\frac{1}{6} \\
& \omega_{2}-\frac{4}{6}
\end{aligned}
$$

(1)

$$
\int_{a}^{b} f(x) d x:(b-a)\left(\frac{1}{6} f(a)+\frac{4}{6} f\left(\frac{a+b}{2}\right)+\frac{1}{6} f(b)\right)
$$

The maximum polynomial that this rule can integrate exactly is: $2+1=3$
in NC methods that with odd \# pts give one extra polynomial order for free

rectangular
1 pts

she
$3 p+s$

TABLE 5.5 Newton-Cotes numbers and error estimates

Is there a faster way to obtain the weights?

$$
\begin{aligned}
\int_{a}^{b} f(\lambda) d x & =(b-a) \sum_{i=1}^{n} \omega_{i} f\left(x_{i}\right) \\
& =(b-a)\left(\omega_{i} f\left(x_{i}\right)+\cdots+\omega_{j} f\left(x_{j}\right)+\cdots\right. \\
& \left(+\omega_{n} f\left(x_{n}\right)\right) \\
L_{j}(x) & = \begin{cases}1 & a \\
0 & x_{i} \\
a & i \neq j\end{cases} \\
& L_{j}(x) d x=(b-a) \omega_{j} \rightarrow
\end{aligned}
$$

$$
\omega_{j}=\frac{\int_{a}^{b} L_{j}(x) d x}{b-a}
$$

better to do this in $\}$:

Gauss quadrature:
In Newton-Cotes every point is counted as once (just give one extra polynomial order improvement) In Gauss quadrature each point gives 2 extra polynomial order improvement

$$
\int_{-1}^{\} f(\xi) d s=\sum_{i=1}^{n} \omega_{i} f\left(\xi_{i}\right)
$$

Let's do the two point scheme:

$$
\int_{-1}^{1} f(\xi) d \xi=\omega_{1} f\left(\xi_{1}\right)+\omega_{2} f\left(\xi_{2}\right)
$$

$\omega_{1}, \omega_{2},\{,\}_{2}$ are to be determined

$$
\left.\begin{array}{r}
\left.\left.\left.\left.f(\xi)+\alpha_{0} \gamma_{V}+\alpha_{1}\right\}+\alpha_{2}\right\}^{2}+\alpha_{3}\right\}^{3}+\alpha_{4}\right\}^{q}- \\
\text { we should be able to integrate up to }
\end{array}\right|_{V} \xi^{3} \text { exactly }
$$

Pros 1 -

$$
r_{r}^{1}, r_{1} \quad \frac{1}{r_{i c 1}} \ldots, e_{1}^{1}
$$

\square
we should be able to integrate up to $\}$ exactly

$$
e q 1
$$

$$
\omega_{1}+w_{2}=2
$$

$$
897
$$

$$
\omega_{1} j_{1}+\omega_{2} i_{2}=0 \rightarrow \frac{1}{\sqrt{3}}\left(\omega_{2}-\omega_{1}\right)=0 \rightarrow \omega_{1}=\omega_{2}=1
$$

$$
\begin{aligned}
\int_{-1}^{1} f(\xi) d \xi= & \omega_{1} f\left(\gamma_{1}\right)+\omega_{2} f\left(\xi_{n}\right) \\
\omega_{1} & =\omega_{2}=1 \\
\xi_{1} & =\frac{-1}{\sqrt{3}}, f_{2}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

2 pt Gavss quadratute
It integrates up to O (order) 3 polynemials

From HW5

$$
\begin{align*}
& f(\xi)=1: \quad \int_{-1}^{1} f(\xi) d \xi=\int_{-1}^{1} 1 d \xi=2=\omega_{1} \frac{1}{f\left(\xi_{j}\right)+\omega_{2} f\left(\delta_{2}\right) \rightarrow} \tag{-1}\\
& \left.\left.\left.f(\xi)<\xi: \int_{-1}^{1} f(\xi) d\right\}=\int_{-1}^{1}\right\}_{1}^{1} d f=0=\omega_{1} f\left(\xi_{1}\right)+\omega_{2} f\left(\xi_{2}\right)=\omega_{1}\right\}_{1}+\omega_{n} \xi_{2} \tag{2}\\
& f(j)=\}^{2}: \quad \int_{-1}^{1} f(g) d \xi=\int_{-1}^{1} \xi^{2} d \xi=\frac{2}{3}=\omega_{1} f(\xi)+0_{2} f\left(\xi_{2}\right)=\omega_{1} \xi_{1}^{2}+\omega_{2} \xi_{2}^{2} \tag{e3}\\
& \left.\left.f(\zeta)=\int_{-1}^{3}: \int_{-1}^{1} f(s) d \xi=\int_{-1}^{-1}\right\}^{3} d \xi=0=\cdots=\omega_{1}\right\}_{1}^{3}+\omega_{1} \xi_{2}^{3} \\
& \omega_{1}+\omega_{2}=2 \\
& \omega_{1} \xi_{1}+\omega_{2} j_{2}=0 \\
& \left.\left.\omega_{1}\right\}_{1}^{2}+\omega_{2}\right\}_{2}^{2}=\frac{2}{3} \\
& \left.\omega_{1} \delta_{1}^{3}+\omega_{2}\right\}_{2}^{3}=0 \text { (e4) }
\end{align*}
$$

$$
\begin{aligned}
& 1 \text { pt scheme } \\
& \arg _{2}(\underbrace{\left.\delta_{1}-\xi_{2}\right)\left(\xi_{1}+\xi_{2}\right.}_{\hat{\rho}_{1}^{7}-\gamma_{2}^{2}})=0 \\
& -91 \\
& \text { this is the coly valid solu- } \\
& \begin{array}{c}
\left(\omega_{1}+\omega_{2}\right) \xi_{1}^{2}=\frac{2}{3} \\
\omega_{1}+\omega_{2}=2
\end{array} \rightarrow \delta_{1}^{2}=\frac{1}{3} \\
& \rightarrow \xi_{1}= \pm \frac{1}{\sqrt{3}} \quad \xi_{9}=-\xi_{1}=-\frac{1}{\sqrt{3}} \quad \text { we cond } \xi_{1} \quad<\xi_{2} \\
& \xi_{1}=\frac{-1}{\sqrt{3}}, \xi_{2}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

Figure 4: Legendre polynomials (Source: http://en.wikipedia.org/wiki/Legendre_polynomials

$$
\begin{equation*}
\int_{-1}^{1} P_{m}(\xi) P_{n}(\xi) \mathrm{d} \xi=\frac{2}{2 n+1} \delta_{m n} \quad \text { no sum on } n \tag{4}
\end{equation*}
$$

- The global nature of trial functions ϕ in spectral method results in full \mathbf{K} matrices that are expensive to solve.
- To circumvent this problem we employ trial functions that make \mathbf{K} diagonal.
- In weak statement $K_{i j}:=\mathcal{A}\left(\phi_{i}, \phi_{j}\right)=\int_{\mathcal{D}} L_{m}^{w}\left(\phi_{i}\right) L_{m}\left(\phi_{j}\right) \mathrm{dv}$.
- If the problem is self-adjoint $\mathcal{A}(.,$.$) is an inner product and we can construct an$ orthogonal trial function basis ϕ_{i} for example using Gram Schmidt method.
- Given the particular form of \mathcal{A} (from L_{m}^{w} and L_{m}) and domain of integration \mathcal{D} ([01], $\left[\begin{array}{ll}-1 & 1\end{array}\right]$, semi-infinite, infinite, etc.) we employ various trigonometric and orthogonal polynomial spaces. Some examples are:
- $\phi_{k}(x)=e^{\mathrm{i} k x}$ Fourier spectral method.
- $\phi_{k}(x)=T_{k}(x)$ Chebyshev spectral method.
- $\phi_{k}(x)=L_{k}(x)$ or $P_{k}(x)$ Legendre spectral method.
- $\phi_{k}(x)=\mathcal{L}_{k}(x)$ Laguerre spectral method.
- $\phi_{k}(x)=H_{k}(x)$ Hermite spectral method.
where $T_{k}(x), L_{k}(x)\left(P_{k}(x)\right), \mathcal{L}_{k}(x)$, and $H_{k}(x)$ are the Chebyshev, Legendre, Laguerre, and Hermite polynomials of degree k, respectively.
- The orthogonal property of these functions is for simple geometries. That is why spectral methods are more popular for simple geometries where we can take advantage of their exponential convergence property while keeping computational costs low by using orthogonal trial functions.

v
Lo gendre

Summary

\circlearrowright
ordor of interral.
(polynemial order 0 that can be indegraded exaclly)

Neuton

- Crter

n

$$
Q=\left\{\begin{array}{l}
n-1 \\
n
\end{array}\right.
$$

even n

Gavss Gundradure
n

$$
0=\Omega n-1 \rightarrow
$$

$\bigcirc \longrightarrow \longrightarrow$
NC

$$
n=\left\{\begin{array}{lll}
0 & 0 & \text { add } \\
0 & & \\
& \text { cose oven eren er }
\end{array}\right.
$$

cax often en coundred Gaves

$$
n=\operatorname{cail}\left(\frac{e+1}{2}\right)
$$

If

1. Material is heterogeneous (E and A not constant) $O R$
2. Distorted (skewed) (J not constant)

We cannot integrate K with ANY number of NC or G points in general.
However, this is something called FULL INTEGRATION order in that, JUST in deciding the number of points needed, we ignore material part (EA above) and Jacobian term (J above) temporarily.

$$
\left.\left[\begin{array}{c}
\xi-\frac{1}{2} \\
\xi+\frac{1}{2} \\
-2 \xi
\end{array}\right]\left[\xi-\frac{1}{2},\right\}+\frac{1}{2},-2 \xi\right]=0
$$

$N=n=0+1$
chen o

1. 50 Points Use a 3 point Gauss and 5 point Newton-Cotes quadrature rule to evaluate the following integral and obtain their respective errors with respect to exact value of the integral $I_{e}=\tan ^{-1}(2)-\tan ^{-1}(-1)$. Quadrature points and weights are given in fig. 1.

A< 5 points NOs

$$
I=\int_{-1}^{2} \frac{\mathrm{~d} x}{1+x^{2}}
$$

then Use Grows Quad

