- 1. For steel the elastic modulus E = 210 GPa. For a given specimen material strength $\sigma_f = 250$ MPa. (40 Points)
 - (a) Provide an estimate for theoretical strength σ_c based on atomistic potential.
 - (b) What is the ratio σ_f/σ_c and what is the reason for discrepancy?
 - (c) Obtain an estimate for the ratio $r = a/x_0$ for a = representative defect size in the material and $x_0 =$ atomistic lattice length scale.
 - (d) If $x_0 \approx 10^{-10}$ m obtain an estimate for surface energy γ_c .
- 2. For a specimen which can be characterized by a point force P and displacement u we have two measurements of (u_1, P_1) for crack length a_1 and (u_2, P_2) for crack length a_2 . The stiffness is defined as K = P/u. Recalling that $G = -\frac{\partial \Pi}{\partial A} = -\frac{\partial \Pi}{\partial aB}$ for A crack surface, a crack length, and B crack (a) obtain an equation for G in terms of u and $\frac{\partial K}{\partial a}$, (b) Given that compliance C = 1/K show that $G = \frac{P^2}{2B} \frac{\partial C}{\partial a}$. (70 Points) Hint: Note that $K = \tan(\theta), G \approx -\frac{\Pi_2 - \Pi_1}{\Delta aB} = -\frac{U_{e_2} - U_{e_1} - W_{12}}{\Delta aB} = \frac{\text{Shaded area}}{\Delta aB}$. Finally, express shaded area using $\Delta \theta$.

Remark: You <u>do not</u> need to show that $G = \lim_{\Delta a \to 0} A$ shared area / $(B\Delta a)$. You <u>need to show</u> that the limit expression is equal to $G = \frac{P^2}{2B} \frac{\partial C}{\partial a}$ by using the small angle approximation for $\Delta \theta$ or any other approach that in the limit of $n_2 \to n_1$ shows this identity.

Figure 1: Force displacement relation for a point force system.

3. A composite laminate is made by bonding two long thin strips of steel with an adhesive epoxy, as shown in figure 2. A patch of the adhesive was intentionally left out in the central section in order to create a central crack of length 2a in the bilayer plate. The joined plates are pulled apart by equal and opposite tensile forces, P. From beam theory, the deflection of a double cantilever beam of length L (half the crack length) under load P is $\Delta = \frac{PL^3}{192EI} \Rightarrow$

$$\frac{\delta}{2} = \frac{P(2a)^3}{192EI} \quad \Rightarrow \quad \delta = \frac{Pa^3}{12EI}$$

where the crack opening δ is the displacement of load P. Since there are two crack front we have,

$$2G = \frac{P^2}{2B} \frac{\partial C}{\partial a}$$

for $C = \delta/P$. The parameters for the problem are: initial crack length $2a_0 = 60$ mm, E = 200 GPa, H = 0.97 mm and B = 10.1 mm.

Figure 2: Geometry and loading of joined plates (image source: Suresh, Fatigue of materials)

Consider two different R (crack propagation resistance) equations:

$$R_1(a) = R_0 \tag{1a}$$

$$R_{2}(a) = \begin{cases} R_{0} & a = a_{0} \\ R_{0} + \Delta R \left[1 - \left(\frac{a - a_{0} - l}{l} \right)^{2} \right] & a_{0} < a < l + a_{0} \\ R_{0} + \Delta R & l + a_{0} < a \end{cases}$$
(1b)

Basically R_1 corresponds to a constant resistance and R_2 is for a case that R increases from R_0 from $a = a_0$ to $R_0 + \Delta R$ at $a = a_0 + l$ by a parabolic equation that smoothly (zero slope at $a = a_0 + l$) transitions to constant $R = R_0 + \Delta R$ for larger crack lengths. The parameters ΔR and l are strengthening of crack resistance due to crack propagation and a characteristic length respectively. Let $R_0 = 300$ Pa.m, $\Delta R = 1200$ Pa.m and $l = a_0 = 30$ mm. Answer the following (140 Points):

- (a) Plot R-Curve for R_1 and R_2 (Resistance R versus crack length a).
- (b) Consider load control and displacement control methods to initiate and cause crack propagation. In load control we increase P until at P_{ini} crack starts propagating. If a critical value P_{cr} exists once $P = P_{cr}$ crack propagation becomes unstable, *i.e.*, propagates without increasing P. Same concepts apply for displacement control to δ_{ini} and δ_{cr} (if it exists). Add G curves for load control P = 45, 105, 130 and displacement control for $\delta = 1$ mm and 3mm to the same R plot that included R_1 and R_2 curves.
- (c) For constant resistance given by R_1 obtain P_{ini}^1 , P_{cr}^1 (if for any *a* crack becomes unstable) and for load control δ_{ini}^1 and δ_{cr}^1 (if for any *a* displacement control method results in unstable crack propagation).
- (d) For increasing resistance case R_2 obtain P_{ini}^2 , P_{cr}^2 and for load control δ_{ini}^2 and δ_{cr}^2 . Again, note that the critical values may not exist.
- (e) Schematically add G curves for P_{ini}^2 , δ_{ini}^2 , P_{cr}^2 (if exists), and δ_{cr}^2 (if exists) to G, R plot from previous steps. Which of loadings eventually result in unstable crack propagation?
- (f) For stable crack growth the relation between a, P, and δ is obtained by G = R (crack force equal to crack resistance). For load control and displacement control solve for both P and δ as functions of a for two different cases of resistance R_1 and R_2 (2 × 2 solutions) and generate the following plots: 1) P (vertical axes) plotted versus δ (horizontal), 2) a versus P, and 3)(optional) a versus δ . The explicit form of these relations are not needed and only the plots need to be correct.
- (g) Based on all the generated plots compare load control and displacement control and also constant R versus increasing R cases.