Fracture vs. Plastic collapse

Ultimate load analysis

For brittle materials Kc low sigma_y is high -> ac is low and they are more prone to fracture

Ductile material Kc high / sigma_y low -> ac is high they often fail under plastic yield

Example

Example

<u>Example 4.11</u> Estimate the failure load under uniaxial tension for a centre-cracked panel of aluminium alloy of width W=500 mm, and thickness B=4 mm, for the following values of crack length 2a = 20 mm and 2a = 100 mm. Yield stress σ_y =350

MPa and fracture toughness K_{lc} =70 MPa \sqrt{m}

We prefer the material to fail by yielding rather than fracture because the large displacements give us warnings to fix the problem

6.1Fracture mechanics in Finite Element Methods (FEM)

We focus on FEM as a means to obtain solutions

Models for failure / fracture of materials:

Basis of solving solid mechanics problem

Models for failure / fracture of materials:

The last two models are **continuum**:

ł

Case 1: material degradation occurs in the bulk (either by plastic deformation or by using a damage model)

Case 2: Cracks are responsible for reducing load bearing capacity of structure

As opposed to continuum models we can have discrete representation of material

- **Discrete element method** -> material is idealized as a set of points interacting with each other
- Peridynamics: A very similar idea

failure is represented In these models

Summary:

Popular failure models for material:

1. Material is modeled as continuum:

- a. Continuum degradation models (Plasticity / Bulk damage model, etc.)
- b. Lower dimensional defects in the domain (e.g. cracks)
- 2. Discrete models where the continuum is modeled as an ensemble of points interacting by mutual forces between them (Discrete element method, Peridynamics, etc.)

A 1.9

We continue with 1.b (continuum domains with cracks) and use FEM to analyze them

Isoparametric Elements

Isoparametric elements are very important in fracture mechanics Why?

Isoparametric singular elements

Improve this element by having one with singularity inside the element

EX T

 Problem
Solution inaccuracy and sensitivity when opposite edge 3-6-2 is curved

Elastic perfectly plastic

