How does ductile fracture happen?

distantions pile upagaines.

All these processes (dislocation motion, pile-up against grain boundary, microvoid formation, ...) contribute to:

- 1. Rough fracture surface
- 2. High fracture energy

A common feature of ductile fracture is ease of motion of dislocations

by inhibiting dislocation notion plastic deformation reduces

ME524 Page 1

We often gain on one lose on the other by different processes (except one discussed later)

Ductile Fracture (Dislocation Mediated)

J pland

Of moximum

territe stress

to break on this pland

if brittle fracture is

tensile stress dominant)

Ductile Fracture

(Cup-and-cone fracture in Al)

Scanning Electron Microscopy: Fractographic studies at high resolution. Spherical "dimples" correspond to microvoids that initiate crack formation.

Brittle Fracture (Limited Dislocation Mobility)

- ➤ No appreciable plastic deformation
- Crack propagation is very fast
- > Crack propagates nearly perpendicular to the direction of the applied stress
- > Crack often propagates by cleavage breaking atomic bonds along specific crystallographic planes (cleavage planes).

Brittle fracture in a mild steel

Brittle fracture goes either:

1. Through the grains (intra-granular / trans-granular fracture)

What changes the response of a material from ductile to brittle?

How do measure "toughness" = energy absorption capacity of a material

So we v-notch charpy test we can measure toughness.

One way to model brittle transition by irradiation is the Wallin Master curve:

2, Impurities and alloying effect on DBTT

- Alloying usually increases DBTT by inhibiting dislocation motion. They are generally added to increase strength or are (an unwanted) outcome of the processing
- For steal P, S, Si, Mo, O increase DBTT while Ni, Mg decease it.

4. Hydrogen embrittlement through DBTT

- Hydrogen in alloys drastically reduces ductility in most important alloys:
 - nickel-based alloys and, of course, both ferritic and austenitic steel
 - Steel with an ultimate tensile strength of less than 1000 Mpa is almost insensitive
- A very common mechanism in Environmentally assisted cracking (EAC):
 - High strength steel, aluminum, & titanium alloys in aqueous solutions is usually driven by hydrogen production at the crack tip (i.e., the cathodic reaction)
 - Different from previously thought anodic stress corrosion cracking(SCC)
- · Reason (most accepted)
 - Reduces the bond strength between metal atoms => easier fracture.

Johnson effectively "ads" like a crack