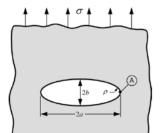

#### From last time:






Stress concentration (from defects or other features) is the main reason we do experience much higher stresses pointwise compared to average applied stress

### Elliptic hole

Inglis, 1913, theory of elasticity

$$\sigma_A = \sigma \left( 1 + \frac{2a}{b} \right)$$



radius of curvature

$$\rho = \frac{b^2}{a}$$

$$|||| \infty$$

$$\sigma_A = \sigma \left(1 + 2\sqrt{\frac{a}{\rho}}\right)$$

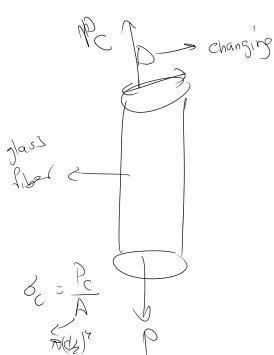
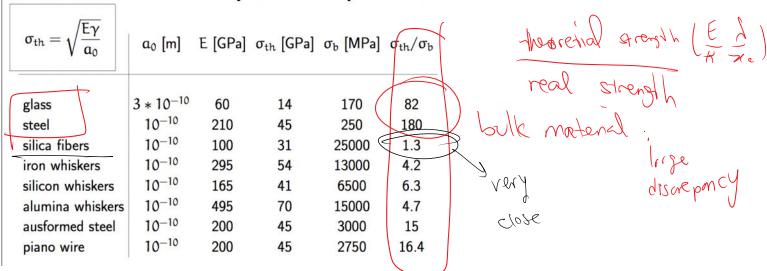
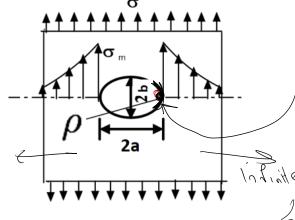

## Griffith's size effect experiment

TABLE 1.1. Strength of glass fibers according to Griffith's experiments.

| _   | Diameter       | Breaking stress       | Diameter       | Breaking stress       |
|-----|----------------|-----------------------|----------------|-----------------------|
|     | $(10^{-3} in)$ | (lb/in <sup>2</sup> ) | $(10^{-3} in)$ | (lb/in <sup>2</sup> ) |
|     | 40.00          | 24 900                | 0.95           | 117 000               |
|     | 4.20           | 42 300                | 0.75           | 134 000               |
|     | 2.78           | 50 800                | 0.70           | 164 000               |
| //  | 2.25           | 64 100                | 0.60           | 185 000               |
| ) / | 2.00           | 2 1 79 600            | 0.56           | 154 000               |
|     | 1.85           | 88 500                | 0.50           | 195 000               |
|     | 1.75           | 82 600                | 0.38           | 232 000               |
|     | 1.40           | 85 200                | 0.26           | 332 000               |
|     | 1.32           | 99 500                | 0.165          | 498 000               |
|     | 1.15           | 88 700                | 0.130          | 491 000               |

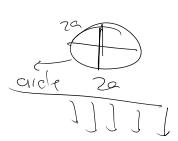
Expland ~


fiber diameter




mex defect size of fiber diameter (C) (C)

Smaller diameter fibers have less critical defect


# Fracture stress: discrepancy between theory and experiment



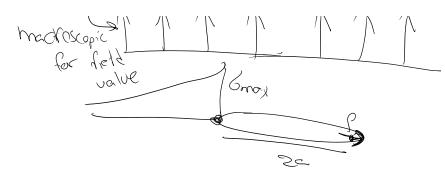


max 2 8 ( 1+ 2 a)

writing this in terms of radius of correcture



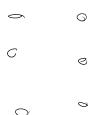
6 max = 36

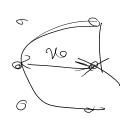

$$\int -\frac{b^2}{a}$$

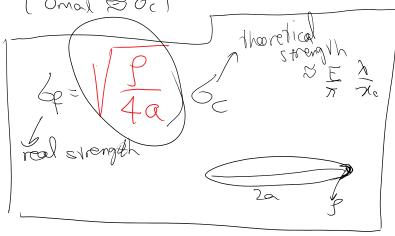
0/5 >00 (more crack like) p>0

as 3-0

- 2601/a


6max 25/3





\w\\K

Strength for a material. Sp with characteristic delect size a & radius of curvature po

Locally where we have stress concentration, we can get to around the theoretisal estimate 60 (6max \$561)







Smin Xo

worse case

worse cose (very sharp crall)

yerd Atomistic:

yerd Atomstic: 
$$\sigma_c = \sqrt{\frac{E\gamma_s}{x_0}}$$
  $\Leftrightarrow$ 

$$\frac{\sigma_f}{\sigma_c} = \sqrt{\frac{x_0}{4a}}$$

Continuum with sharp crack 2a

$$\sigma_f = \sqrt{\frac{E\gamma_s}{a}} \Rightarrow \qquad \qquad \qquad \Rightarrow \qquad \Rightarrow \qquad \qquad \Rightarrow \qquad \Rightarrow$$

### Griffith's verification experiment

 Glass fibers with artificial cracks (much larger than natural crack-like flaws), tension tests

|          | Crack Length, 2a<br>mm | Measured Strength, $\sigma_f$ MPa | $\sigma_f \sqrt{a}$ MPa $\sqrt{	ext{m}}$ |
|----------|------------------------|-----------------------------------|------------------------------------------|
| sample 1 | 3.8                    | 6.0                               | 0.26                                     |
| sample 2 | 3.8<br>6.9             | 4.3                               | 0.25                                     |
| sample 3 | 13.7                   | 3.3                               | 0.27                                     |
| sample 4 | 22.6                   | 2.5                               | 0.27                                     |

(Data from the Griffith experiment)

$$\sigma_f = \sqrt{\frac{E\gamma_s}{4a}} \quad \left[\sigma_f\sqrt{a} = \sqrt{\frac{E\gamma_s}{4}} = \text{const.}\right]$$

## Energy balance during crack growth

 $(x) = \frac{\sqrt{x}}{\sqrt{x}}$ 

external work

external work

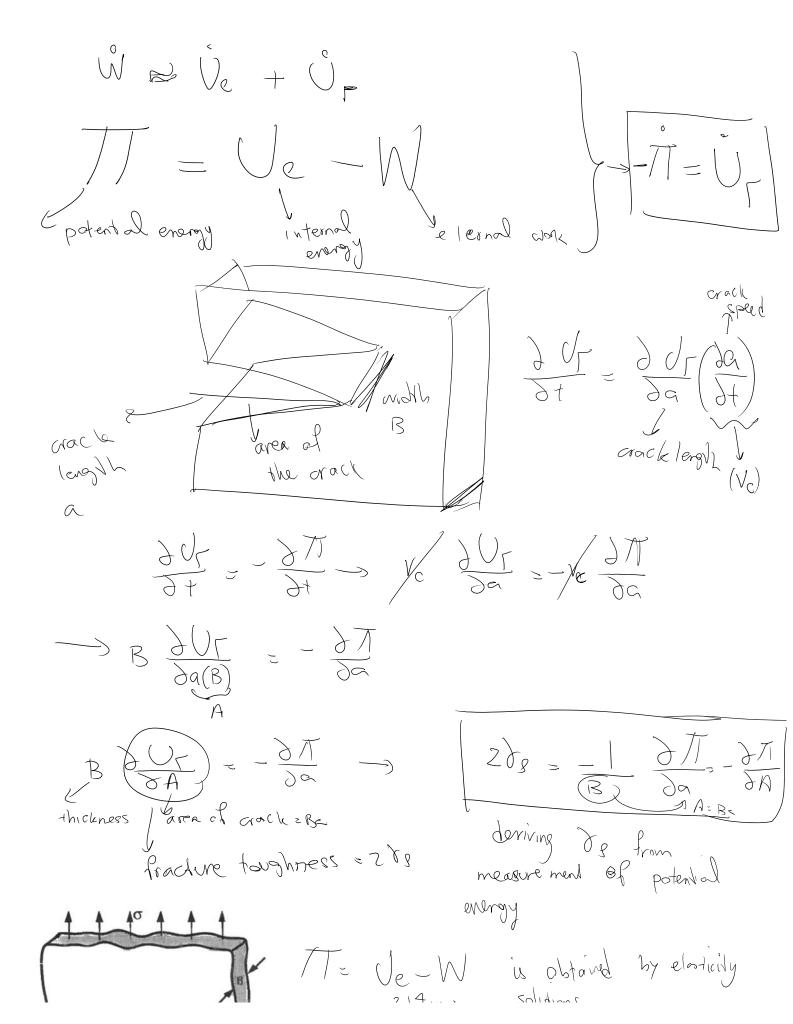
$$\dot{\vec{W}} = \dot{\vec{U}}_e + \dot{\vec{U}}_p + \dot{\vec{U}}_k + \dot{\vec{U}}_\Gamma$$
surface energy

and plant is

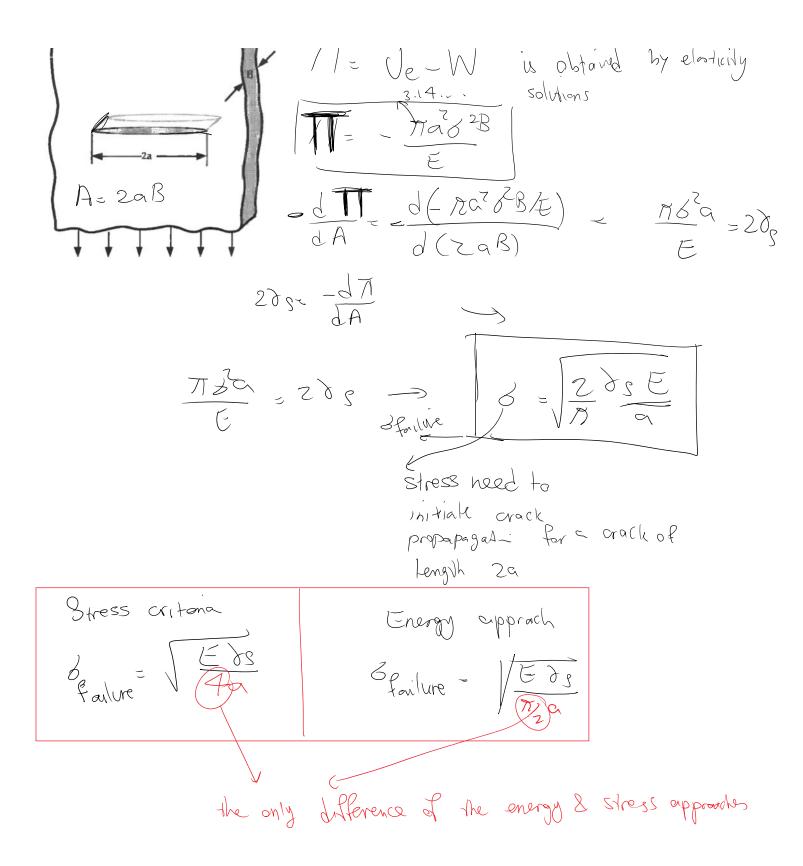
already

and plant is

already


and plant is

and


o "quari\_bothle" responce we can ignor Up from plantic debarradioi

o quoi-static problem finetic energy can be ignored

W & (), + ()\_



ME524 Page 6



Stress approach:
Stress Concentration

$$\sigma_f = 0.5\sqrt{\frac{E\gamma_s}{a}}$$

Energy approach:

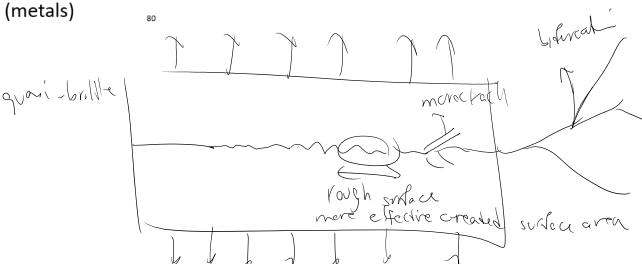
Griffith

$$\sigma_f = \sqrt{\frac{2}{\pi}} \sqrt{\frac{E\gamma_s}{a}} \approx 0.8 \sqrt{\frac{E\gamma_s}{a}}$$

## Energy equation for Plane stress ductile materials

$$\sigma_c = \sqrt{rac{2E\gamma_s}{\pi a}}$$
 Griffith (1921), ideally brittle solids

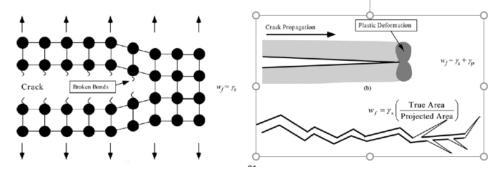
$$\sigma_c = \sqrt{\frac{2E(\gamma_s + \gamma_p)}{\pi a}}$$


Irwin, Orowan (1948), metals

need to odt
plastic energy
description per writ area of your advonce contributes to every duspole

 $\gamma_p$  plastic work per unit area of surface created

 $\gamma_p \gg \gamma_s$ 


 $\gamma_p pprox 10^3 \gamma_s$  (metals)



# Generalization of Energy equation

$$\sigma_f = \sqrt{\frac{2E\boldsymbol{w_f}}{\pi a}}$$

- $w_f$ : Fracture energy from plastic, viscoelastic, or viscoplastic effects
- $w_f$  can also be influenced by crack meandering and branching
- Caution: If nonlinear displacement regions are large enough this equation is not accurate as it is based on linear elastic solution  $(\Pi = I_{\bigcirc} \frac{\pi \sigma^2 a^2 B}{E})$



#### Energy Release rate versus fracture resistance

Energy released a potential energy = Ve-W

A surface of grack

hav much energy is released per unit area of crack

Energy release rate (Irwin 1956)

R= 20 Fracture resistance (toughness)

How much energy is helded to create unit surface of creacle.

a few minutes ago one derived  $-\frac{dT}{dA} = \frac{2}{R}$ For grani-static crack granth

For crack growth we need to have R