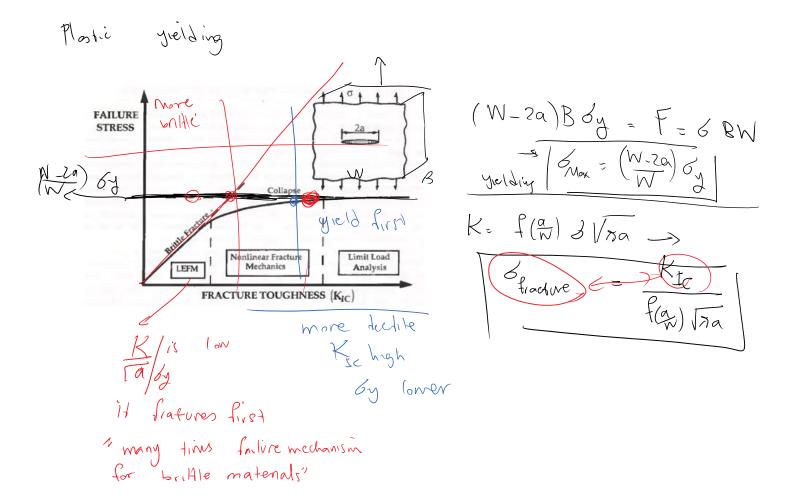
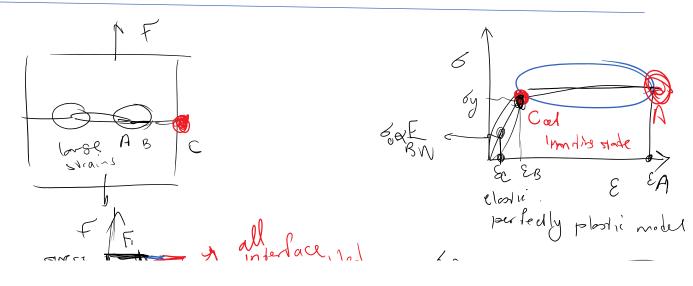
5.3. 7. Fracture mechanics versus material (plastic strength

Mechanical source of failure of a specimen / material:

- 1. Fracture
- 2. Fatigue
- 3. Plastic yielding
- 4. Buckling



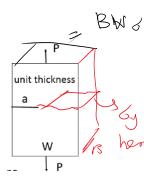


Ludan ce to crack tip

pertedly plastic model

yielding max load:

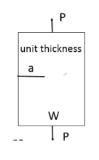
assume all interface is yielded

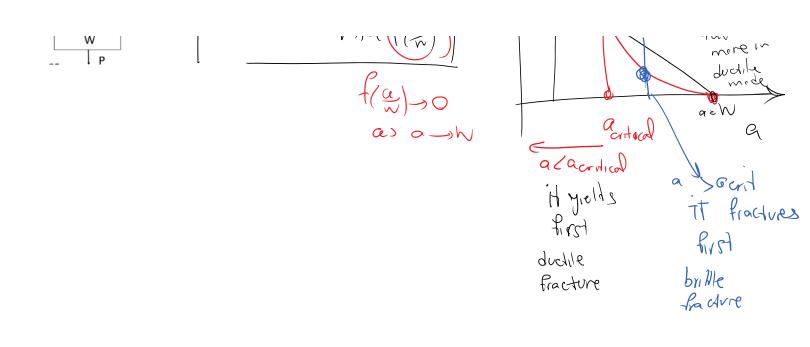


for fracture
$$G = \frac{P}{\text{total area}} = \frac{BW}{BW}$$

$$K = 6 \sqrt{\pi a} f(\frac{a}{W}) \otimes fallwre$$
 $K_{JC} = 6 f(\frac{a}{W}) \Rightarrow$

$$\delta \rho = \frac{K_{IC}}{\sqrt{\pi a} f(\frac{a}{W})}$$

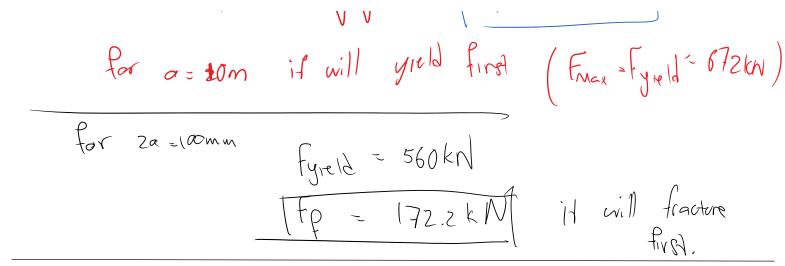




Example 4.11 Estimate the failure load under uniaxial tension for a centre-cracked panel of aluminium alloy of width W=500 mm, and thickness B=4 mm, for the following values of crack length 2a=20 mm and 2a=100 mm. Yield stress $\sigma_v=350$

following values of crack length 2a = 20 mm and 2a = 100 mm. Yield stress $\sigma_{,} = 350$ MPa and fracture toughness $K_{1c} = 70$ MPa \sqrt{m} $K_{5c} = 70$ MPa \sqrt{m} $R_{5c} = 350$ MPa $R_{5c} = 350$

Fyield = $\frac{8}{4} \times (W-2a) \times = \frac{8}{4} \times (W-2a) \times (W-$



6. Computational fracture mechanics

- 6.1. Fracture mechanics in Finite Element Methods
- 6.2. Traction Separation Relations (TSRs)

6.1Fracture mechanics in Finite Element Methods (FEM)

- 6.1.1. Introduction to Finite Element method
- 6.1.2. Singular stress finite elements
- 6.1.3. Extraction of K (SIF), G
- 6.1.4. J integral
- 6.1.5. Finite Element mesh design for fracture mechanics
- 6.1.6. Computational crack growth
- 6.1.7. Extended Finite Element Method (XFEM)

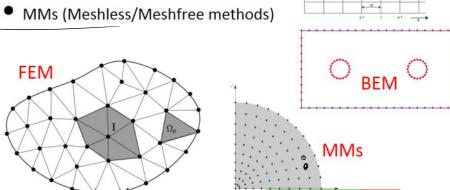
Numerical methods for solving PDEs

Numerical methods to solve PDEs

FD 1

- Finite Difference (FD) & Finite Volume (FV) methods
- **BEM (Boundary Element Method)**

FEM (Finite Element Method)



How failure is modeled in computational setting:

011 ~ 11, 0

How failure is modeled in computational setting 1. Bulk damage & phase Field methods thick finite thickness regions approximate for bulk damage Damage parameter Strain Sharp interface models Some equations govern grack nucleations & propagations o LE FM/ PFM

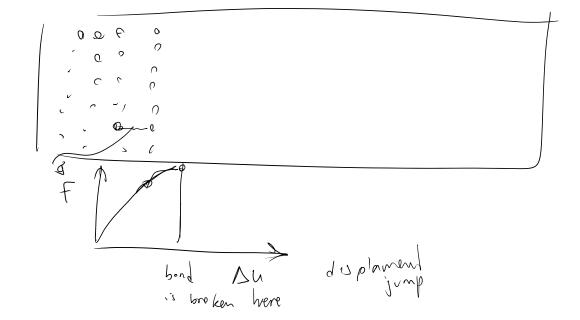
o Traction Separation Relations

Total damage model

Interfacial damage mobil

Discrete models:

Material is treated as a collection of interacting particles, similar to Molecular bynamin



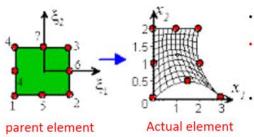
Peridynamics

Discrete element (rock mechanics)

can be elouri or rigid

We will only cover sharp interface models through LEFM and TSRs

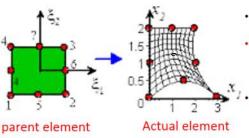
Isoparametric Elements



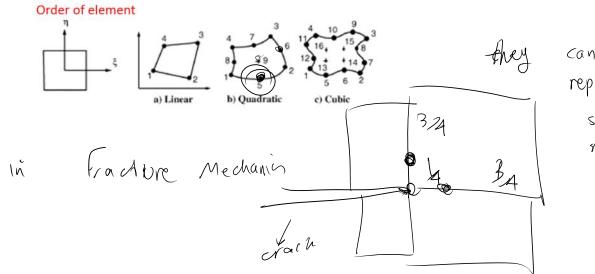
- Geometry is mapped from a parent element to the actual element
- The same interpolation is used for geometry mapping and FEM solution (in the figure 2nd order shape functions are used for solution and geometry) Geometry map and solution are expressed in terms of ξ

Order of element

Isoparametric Elements

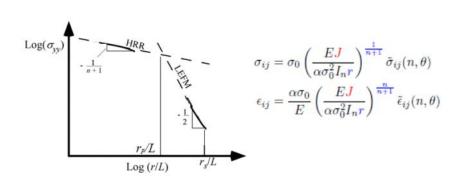


- Geometry is mapped from a parent element to the actual element
- The same interpolation is used for geometry mapping and FEM solution (in the figure 2nd order shape functions are used for solution and geometry)
 Geometry map and solution are expressed in terms of \(\xi\)



reproduce singular res ponse of

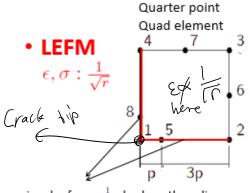
Singular crack tip solutions



- NLFM (PFM): For HRR solution stress $\frac{1}{r^{\frac{1}{n+1}}}$ and strain $\frac{1}{r^{\frac{n}{n+1}}}$ are still singular \Rightarrow
 - for elastic-perfectly plastic $(n \to \infty)$ stress is bounded and strain is $\frac{1}{r}$ singular

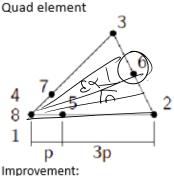
Linear Elastic FM (LLFM) E&6 & 1 (nz| above)

Isoparametric singular elements



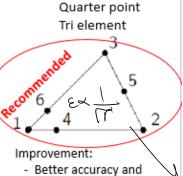
singular form $\frac{1}{\sqrt{r}}$ nly along these lines NOT recommended

Quarter point collapsed



 ½ rom inside all element Problem

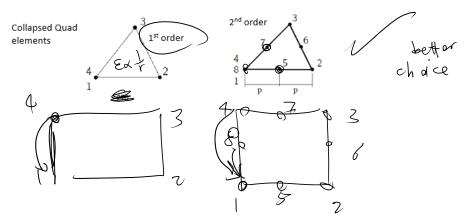
- Solution inaccuracy and sensitivity when opposite edge 3-6-2 is curved

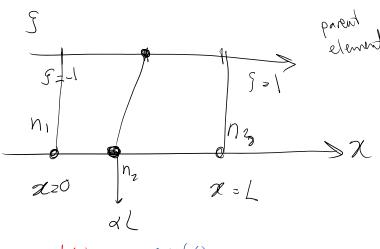


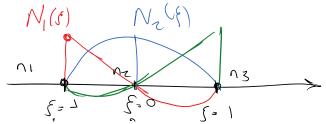
wsile. less mesh sensitivity the

Lement

B. 1/r singularity for elastic perfectly plastic







$$N_{1}(\xi) = \frac{(\xi - \xi_{z})(\xi - \xi_{s})}{(\xi_{1} - \xi_{z})(\xi_{1} - \xi_{s})}$$

$$N_{1}(\xi_{2}) = N_{1}(\xi_{3}) = 0$$

$$N_{1}(\xi_{1}) = 1$$

$$S_{1}^{=1} \qquad S_{3}^{=0} \qquad S_{3}^{=1}$$

$$W_{2}(s) = \frac{(f-f_{1})(f-f_{3})}{(f_{2}-f_{3})(f_{4}-f_{5})} = (-f^{2})$$

$$W_{3}(s) = (f-f_{1})(f-f_{5}) = (-f^{2})$$

$$V_{1} = \frac{(\xi - 0)(f - 1)}{(-1 - 0)(-1 - 1)} = \frac{\xi(\xi - 1)}{2}$$

$$N_3(f) = \frac{(f-f,)(f-f,)}{(f_3-f,)(f_3-f,)} = \frac{f(f+1)}{2}$$

$$N_{1}(s)$$
 $N_{2}(s)$
 $N_{3}(s)$
 $N_{4}(s)$
 $N_{5}(s)$
 $N_{5}(s)$
 $N_{5}(s)$
 $N_{5}(s)$
 $N_{5}(s)$
 $N_{5}(s)$

$$N_{1}(\beta) = \frac{\xi(\xi_{1})}{\xi}$$
 $N_{2}(\beta) = 1-\xi^{2}$
 $N_{3}(\beta) = \frac{\xi(\xi_{1})}{\xi}$

$$U(\xi) = U_1 N_1(\xi) + U_2 N_2(\xi) + U_3 N_3(\xi)$$

$$U(\xi,) = U_1 N_1(\xi) + U_2 N_2(\xi) + U_3 N_3(\xi)$$

$$= U_1$$

$$\mathcal{E} = \frac{du(\xi)}{dx}$$

$$\varepsilon \longrightarrow \varepsilon$$

et
$$x=0$$
or $f=-1$