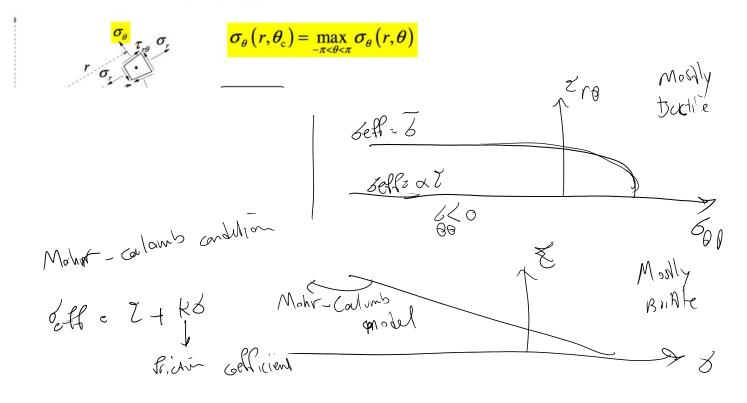
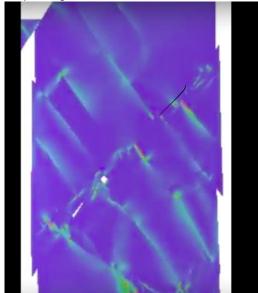


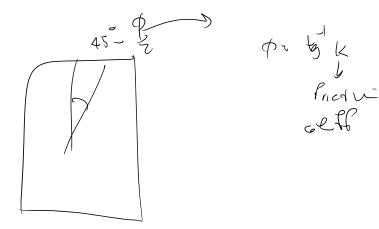
For alpha = 0, this is the same max circumferential criterion we used before:

Maximum circumferential stress criterion



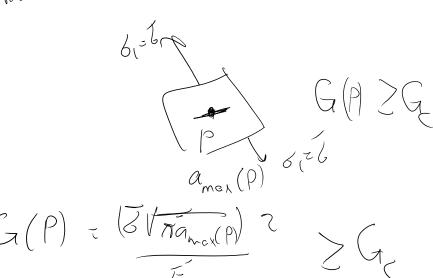
Example of using Mohr-Coulomb criterion:





Nuction of aracles

IVuction of cracles This shall be consistent with propagation ordering Example - Maximum circenferential stress woh colors, 6000 B 2 r., 500 it for any pond $\mathcal{L}_{\theta\Theta}(\theta) > \mathcal{L}_{0}$ a orack is nu deated here Maximum energy release rate Example 2 $G(\theta)$ is local maximum $S G(\theta) \ge G_{r}$ **/** How about nucleation models 6 イイイ イ イ イ 1 1-0 ME524 Page 3

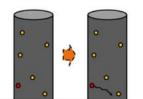


1



• Same concept applies to modified maximum circumferential tensile stress criteria:

 $\max_{-\pi < \theta < \pi} \sigma_{\text{eff}}(r \to 0^+, \theta) = \sigma_0$, crack nucleates



Crack nucleation criterion

 For Maximum Energy Release Rate Criterion if we assume there are no defects, there will be no crack nucleation. However, assuming that local stress field generates a tensile maximum principal stress of σ₁ a "microscopic" initial crack (defect) of length a_{ini} perpendicular to σ₁ direction generates,

$$G = \frac{K_I^2 + K_{I\!I}^2}{E'} = \pi a_{\rm ini} \sigma_1^2$$

so the microcrack propagates (i.e., a "macroscopic" crack nucleates) when,

$$G = G_c \quad \Leftrightarrow \quad \sigma_1 = \sqrt{\frac{G_c}{\pi a_{\rm ini}}}$$

Initial crack direction perpendicular to σ₁ is chosen to maximize G.

– We have assumed the initial crack to be small enough to use the infinite domain SIF formula of $K_I=\sqrt{\pi a}\bar{\sigma}.$

8. Fatigue

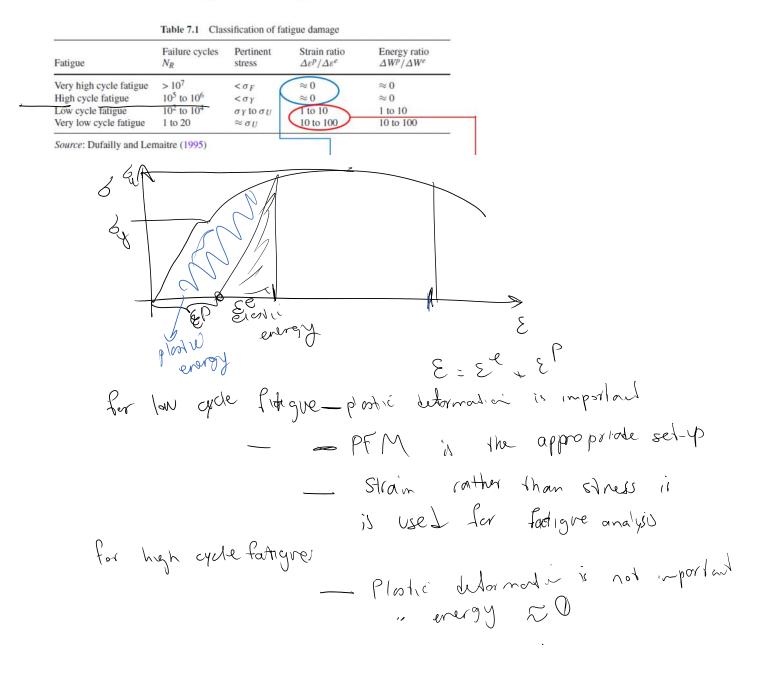
- 8.1. Fatigue regimes
- 8.2. S-N, P-S-N curves
- 8.3. Fatigue crack growth models (Paris law)
 - Fatigue life prediction
- 8.4. Variable and random load
 - Crack retardation due to overload

Fatigue fracture is prevalent!

- Deliberately applied load reversals (e.g. rotating systems)
- Vibrations (machine parts)
- · Repeated pressurization and depressurization (airplanes)
- Thermal cycling (switching off electronic devices)
- Random forces (ships, vehicles, planes) (source: Schreurs fracture notes 2012)

Fatigue occurs always and everywhere and is a major source of mechanical failure

Fatigue Regimes



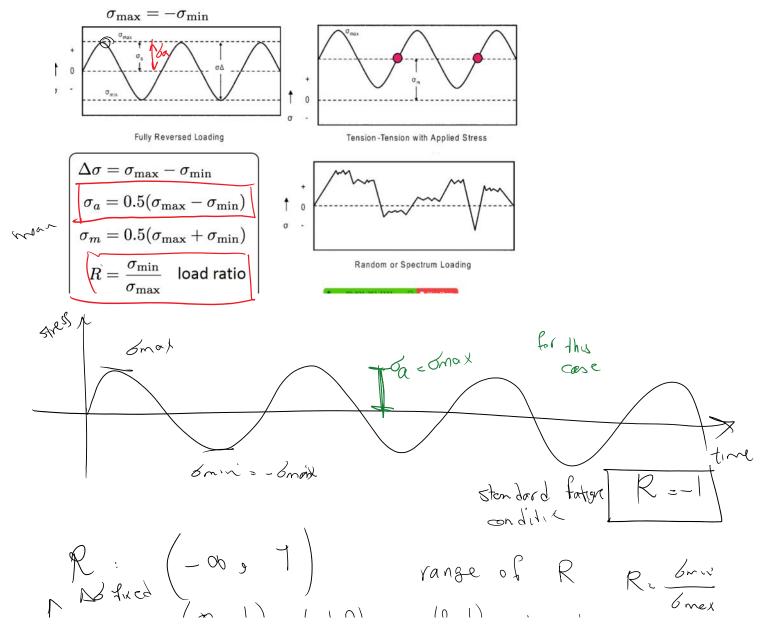
- LEFM is used - Amalyzed Systress

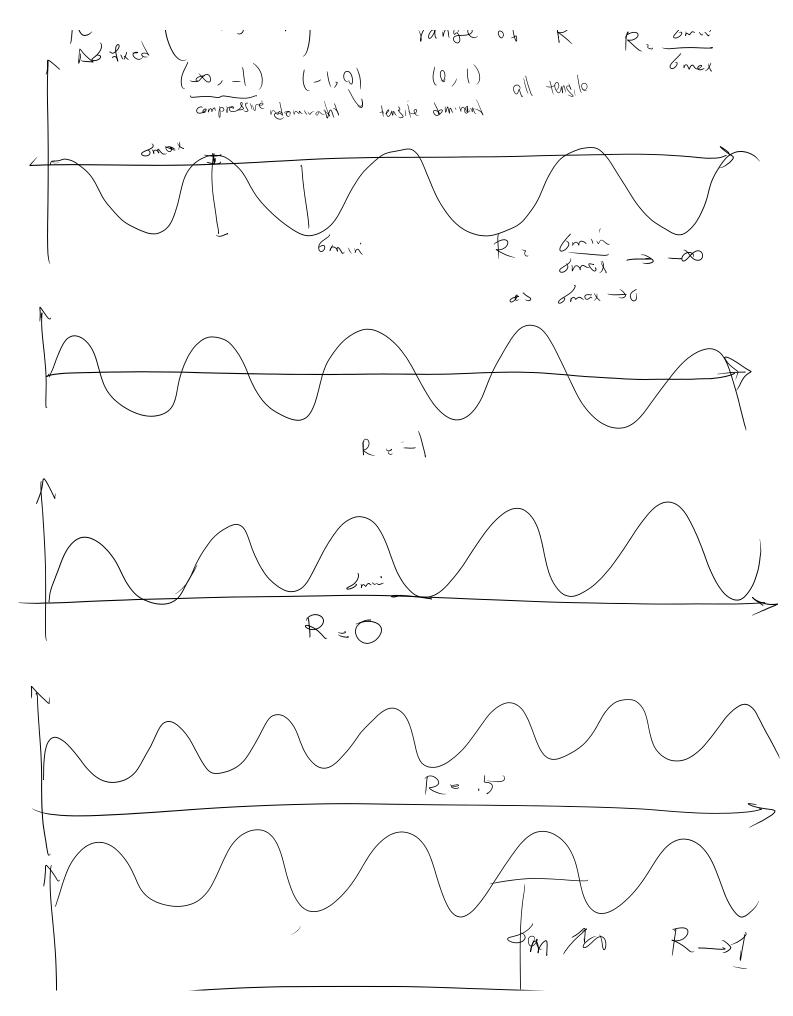
• Very high cycle and high cycle fatigue:

- Stresses are well below yield/ultimate strength.
- · There is almost no plastic deformation (in terms of strain and energy ratios)
- Fatigue models based on LEFM theory (e.g. SIF K) are applicable.
- Stress-life approaches are used (stress-centered criteria)
- Low cycle and very low cycle fatigue:
 - · Stresses are in the order of yield/ultimate strength.
 - There is considerable plastic deformation.
 - Fatigue models based on PFM theory (e.g. J integral) are applicable.
 - Strain-life approaches are used (strain-centered criteria)

Focus in this course is only on High-cycle fatigue

LEFM is appropriate for this regime

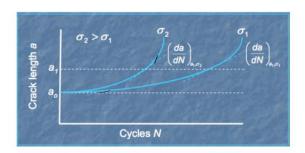


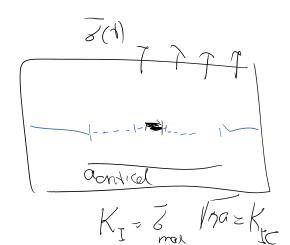


7441 / UV

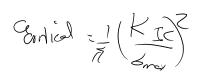
\searrow

Typical fatigue growth:



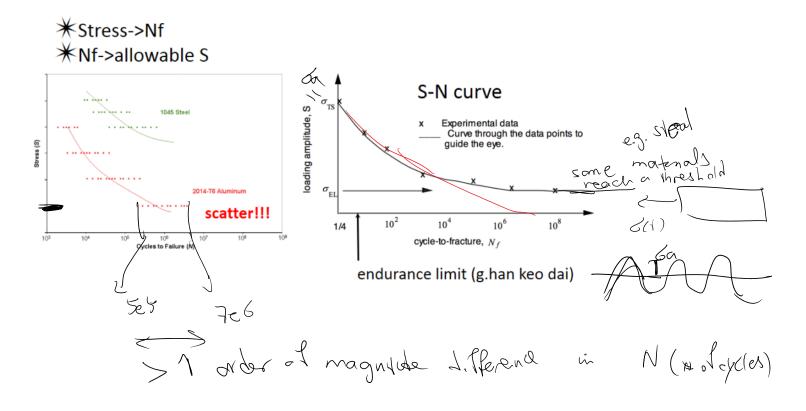


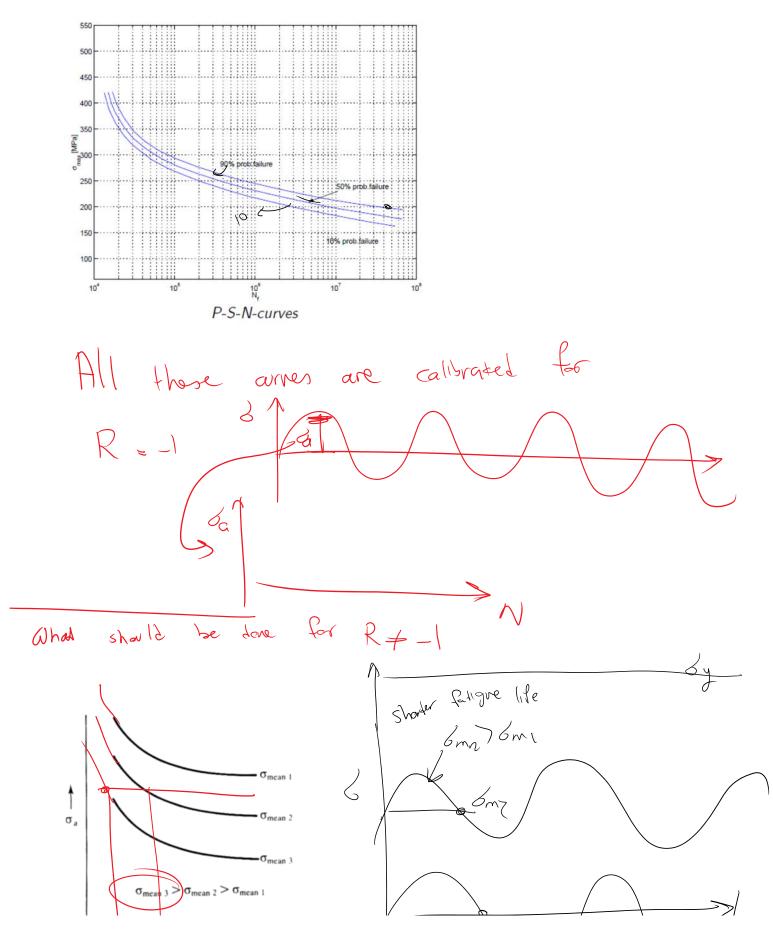
- 1. Initially, crack growth rate is small
- 2. Crack growth rate increases rapidly when a is large
- 3. Crack growth rate increases as the applied stress increases



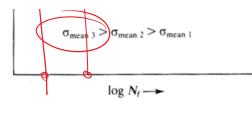
S-N curve

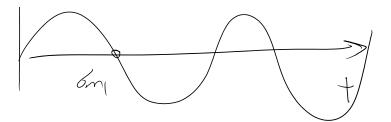
Reminder: <u>ASTM</u> defines *fatigue life*, *N_f*, as the number of stress cycles of a specified character that a specimen sustains before <u>failure</u> of a specified nature occurs.





ME524 Page 9





Sa

 $\sigma_a = \sigma_{f0} \left[1 - \left(\frac{\sigma_m}{\sigma_u} \right)^{\gamma} \right]$

grein ĩs N

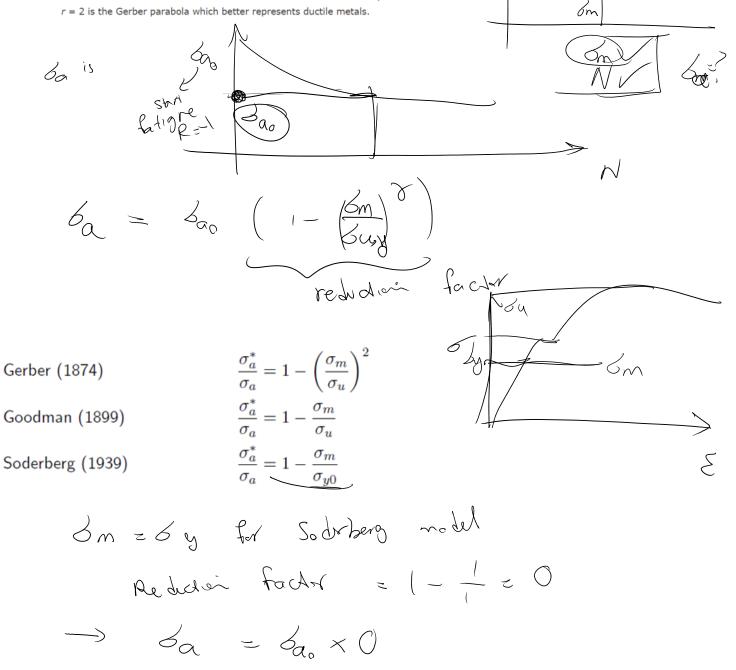
where σ_{a} is the amplitude of allowable stress (alternating stress).

 σ_{f0} is the stress at fatigue fracture when the material under zero mean stress cycled loading

 σ_m is the mean stress of the actual loading.

 $\sigma_{\,\scriptscriptstyle U}$ is the tensile strength of the material.

- r = 1 is called Goodman line which is close to the results of notched specimens.
- r = 2 is the Gerber parabola which better represents ductile metals.



on
$$dm \longrightarrow dy_{G}$$

S-N-P (modifying by simga_m) all this is a very crude model for fatigue, without considering a particular "realization" (sample) of a given material

