
2020/11/04

ME524 Page 1

We can formulate appropriate crack nucleation models for each of the three crack propagation criteria:

- Cracks nucleate from microscopic material defects under high stress/ strain loads.
- For each crack propagation criterion there can be a corresponding nucleation criterion.
- For example for maximum circumferential tensile stress, a crack nucleates when the maximum principle stress σ_1 at a point reaches material strength σ_0 :

 $\label{eq:max_prod} \max_{-\pi < \theta < \pi} \sigma_{\theta}(r \to 0^+, \theta) = \sigma_1 = \sigma_0, \quad {\rm crack \ nucleates}$

Although we assume that there is no initial crack tip, we can measure r relative to the potential nucleation point.

• Same concept applies to modified maximum circumferential tensile stress criteria:

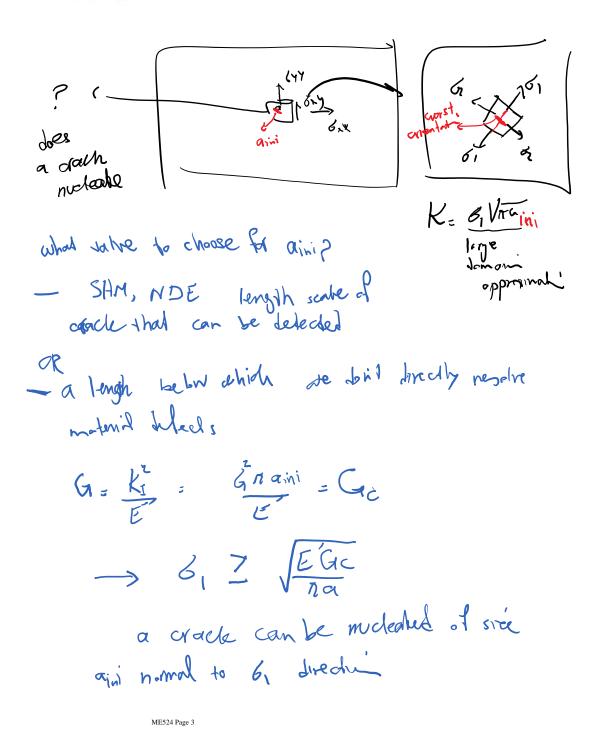
 $\max_{\pi < \theta < \pi} \sigma_{\text{eff}}(r \to 0^+, \theta) = \sigma_0, \text{ crack nucleates}$ $\overrightarrow{\text{och}} \left(\underbrace{(2, 0, 0, \theta)}_{T, 0} = \delta_0, \underbrace{(2, 0, \theta)}_{T, 0$

A nucleation model that can go well with MERR

Crack nucleation criterion

 For Maximum Energy Release Rate Criterion if we assume there are no defects, there will be no crack nucleation. However, assuming that local stress field generates a tensile maximum principal stress of σ₁ a "microscopic" initial crack (defect) of length a_{ini} perpendicular to σ₁ direction generates,

$$G = \frac{K_I^2 + K_{I\!I}^2}{E'} = \pi a_{\rm ini} \sigma_1^2$$


so the microcrack propagates (i.e., a "macroscopic" crack nucleates) when,

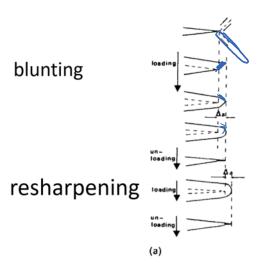
$$G = G_c \quad \Leftrightarrow \quad \sigma_1 = \sqrt{\frac{G_c}{\pi a_{\text{ini}}}}$$

– Initial crack direction perpendicular to σ_1 is chosen to maximize G.

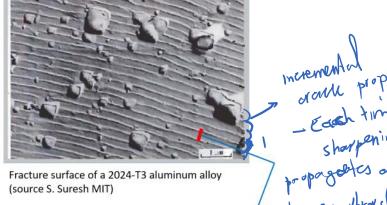
1

– We have assumed the initial crack to be small enough to use the infinite domain SIF formula of $K_I = \sqrt{\pi a} \bar{\sigma}$.

8. Fatigue

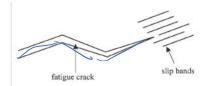

- 8.1. Fatigue regimes
- 8.2. S-N, P-S-N curves
- 8.3. Fatigue crack growth models (Paris law)
 - Fatigue life prediction
- 8.4. Variable and random load
 - Crack retardation due to overload

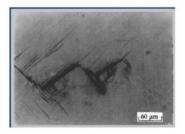
Fatigue happens when the applied loads cycle in time

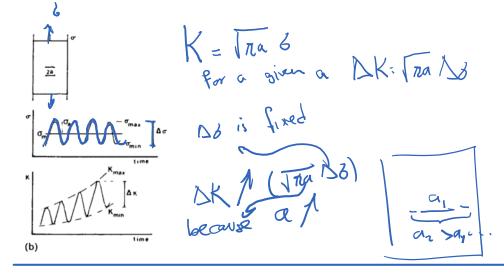

Fatigue fracture is prevalent!

- Deliberately applied load reversals (e.g. rotating systems)
- Vibrations (machine parts)
- Repeated pressurization and depressurization (airplanes)
- Thermal cycling (switching off electronic devices)
- Random forces (ships, vehicles, planes) (source: Schreurs fracture notes 2012)

Fatigue occurs always and everywhere and is a major source of mechanical failure

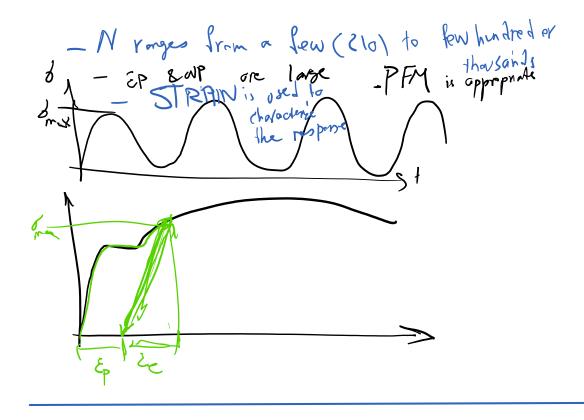






Striation caused by individual microscale crack advance incidents

incremental again oracle propagation -Easth time after sharpening grack propagatics a little And goes through blunting & shorpening again

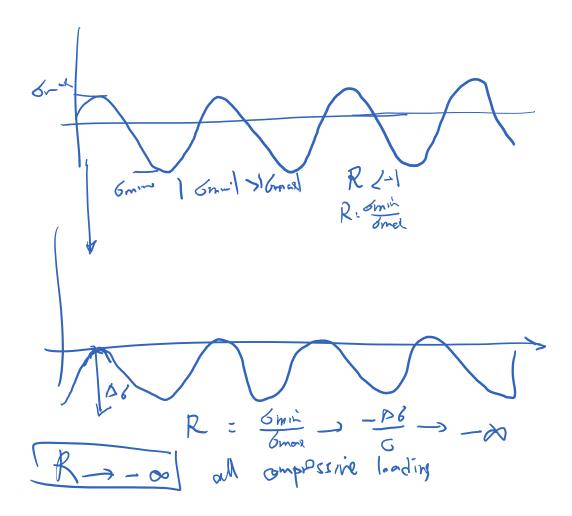


Types of fatigue:

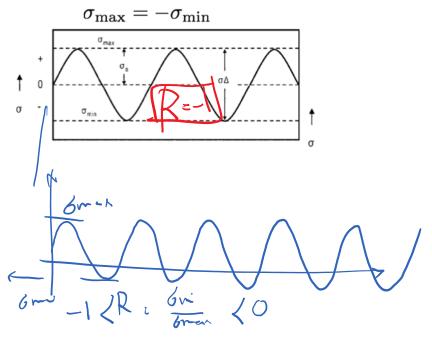
 Table 7.1
 Classification of fatigue damage

Fatigue	Failure cycles N_R	Pertinent stress	Strain ratio $\Delta \varepsilon^p / \Delta \varepsilon^e$	Energy ratio $\Delta W^p / \Delta W^e$
Very high cycle fatione	$> 10^7$	Car	≈ 0	≈ 0

Fatigue	Failure cycles N_R	Pertinent stress	Strain ratio $\Delta \varepsilon^p / \Delta \varepsilon^e$	Energy ratio $\Delta W^p / \Delta W^e$	
Very high cycle fatigue High cycle fatigue Low cycle fatigue Very low cycle fatigue	$> 10^7$ 10^5 to 10^6 10^2 to 10^4 1 to 20	$< \sigma_F < \sigma_Y \sigma_Y \text{ to } \sigma_U \approx \sigma_U$	$ \begin{array}{c} \approx 0 \\ \approx 0 \\ \hline 1 \text{ to } 10 \\ 10 \text{ to } 100 \end{array} $		-
Source: Dufailly and Ler	naitre (1995) S Ver for e	final	failure is in	the order. I	M to
10 or higher					
Brin C			utel stress		
t cyc		Nayo	tes needed	for final	farluk
by come	6mar 12 67	or bir	on L By		
6mm	_, all	ں - `	arke Nr	6.	
HEF, V	HCF	_ ^ _ 1	$v \sim 10^{(-10)}$ Imposil all e EFM the	bory is approf	//////
ducuss ducuss this	N	_ str	oss(prolite/ ed to study	hisoly) is gu y fatigue	worly
	10 ² to 10 ⁴ 1 to 20	The all	Δερ/Δεε 1 to 10 10 to 100	∆Wp/ Dwe 1 to 10 10 to 100	
Source: Dufailly and Len		set to	or exceed	бу ,	¢

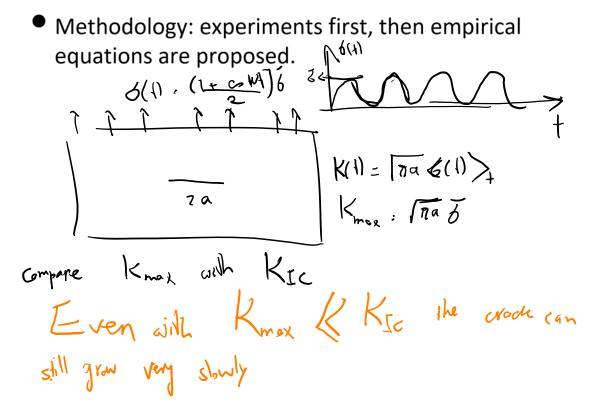


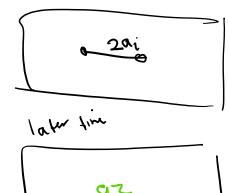
Some terminology:


Base line fatigue loading -

$$Make the loading mate compressive $Mb = 6max - bmin$

$$Mb = 6max - bmin - bmi$$$$

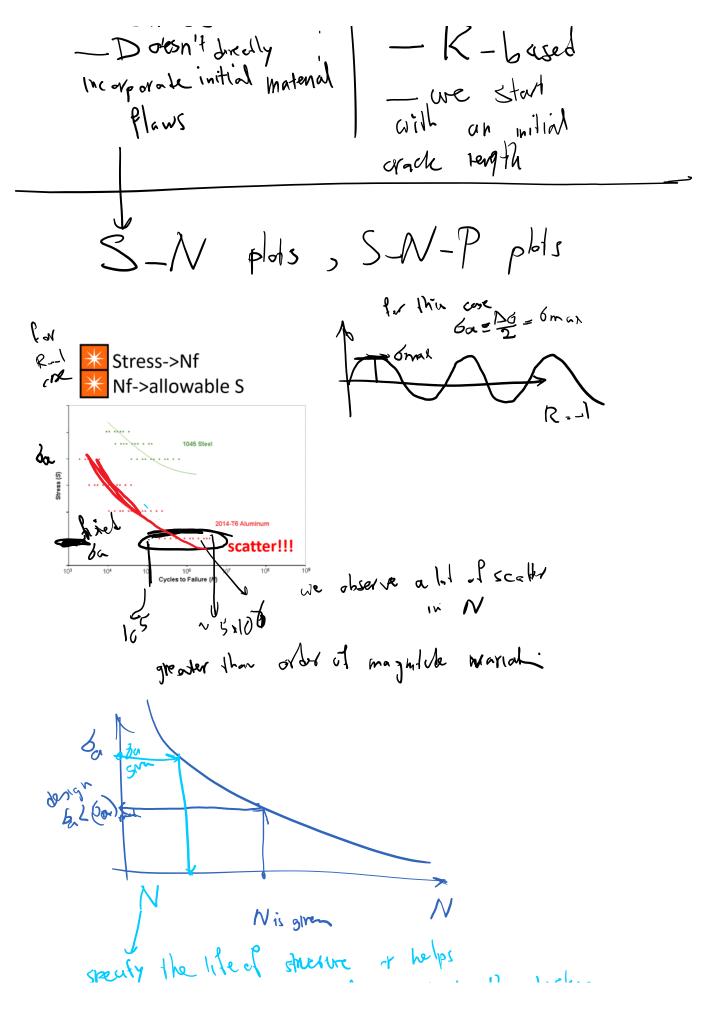

Let's make it more tensile:



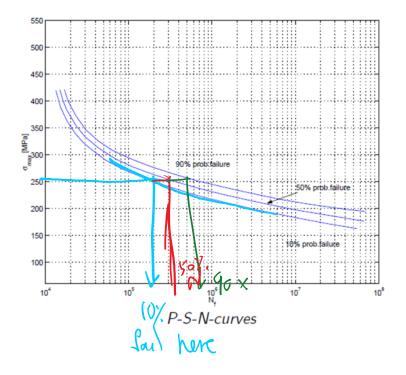
$$\frac{\partial \sigma}{\partial r^{2}} = \frac{1}{3} - \frac{1}{3$$

Cyclic vs. static loadings

- Static: Until K reaches K_c, crack will not grow
- Cyclic: K applied can be well below K_c, crack still grows!!!
- 1961, Paris et al used the theory of LEFM to explain fatigue cracking successfully.



stuge 1 AB= 6 AK = 6 Mai


N6=6 cons

 $\begin{bmatrix} K &= /\Delta K &= 6 V M^{\circ} \\ M_{01} \\ K_{1c} \end{bmatrix}$ I Zoi gradually graves TTL a is large en agh that the clack can propage in an unstable mannur Krc Mar 6 a life of this loading, geometry, ד // בי old approach New opproach ans Inw Stress-book d (Ad) K-based oresn't directly

ME524 Page 11

in monitoring time intervals . to check the structure

