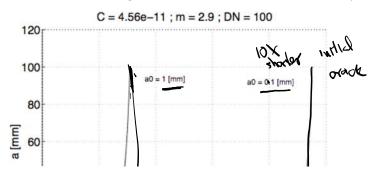
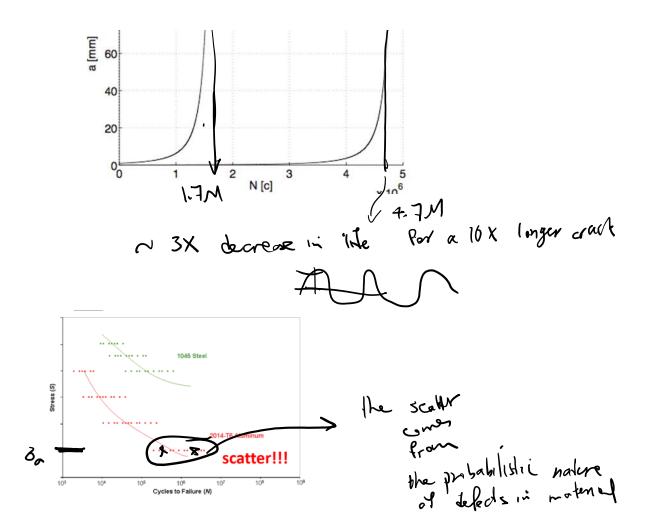

2020/11/11


Wednesday, November 11, 2020 2:51 PM

From last time

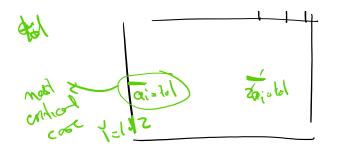


As shown below, ai has a significant influence on Nf (number of cycles to failure):

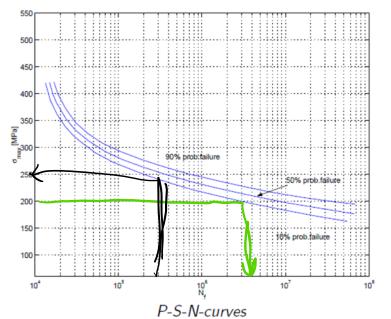
S-N approach does not know much about the actual distribution of defects in a material.

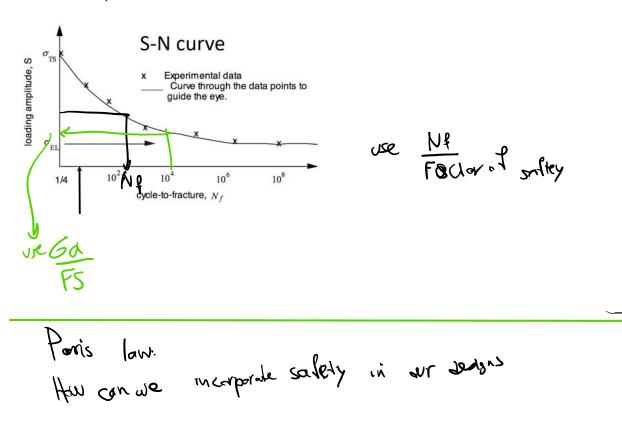
If instead, we know the distribution of defects, we can analyze their fatigue growth in time and make sure it doesn't become unstable.

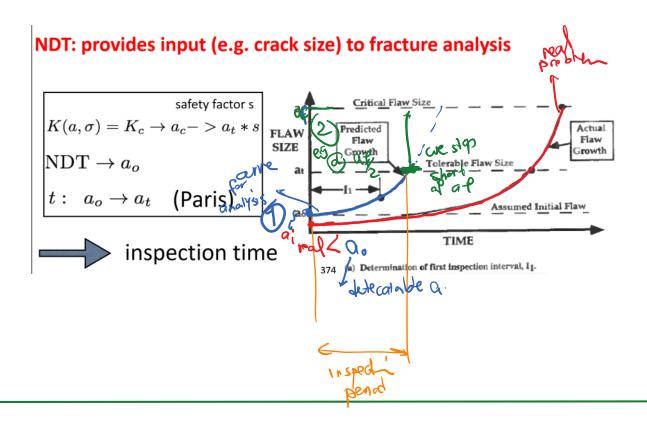
How do we choose ai?


Case I: We know the initial crack length because it's visible and we can see it.

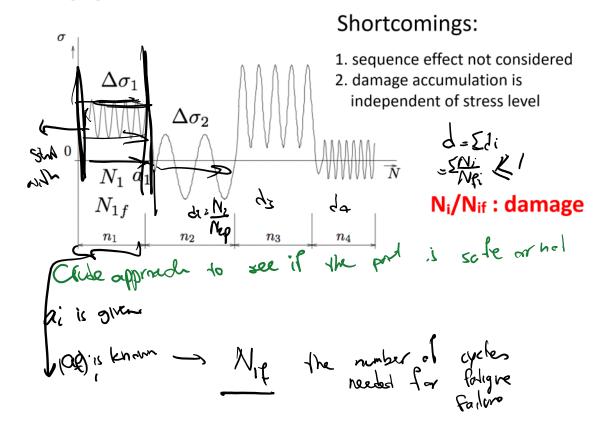
1 zai	Known	


Case II: We cannot detect a crack. What should we do in this case? We need to use the TOLERANCE of the measurement system to choose a worse-case scenario initial crack


٦ ٦,	6(6)	う

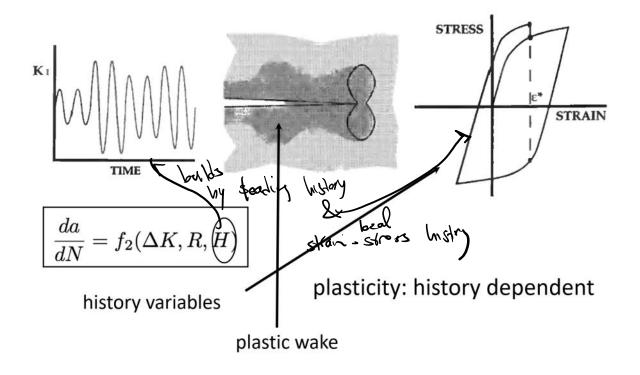


How do we build safety in our designs? S/N plots


Work with 10% prob of failure

Variable load amplitudes

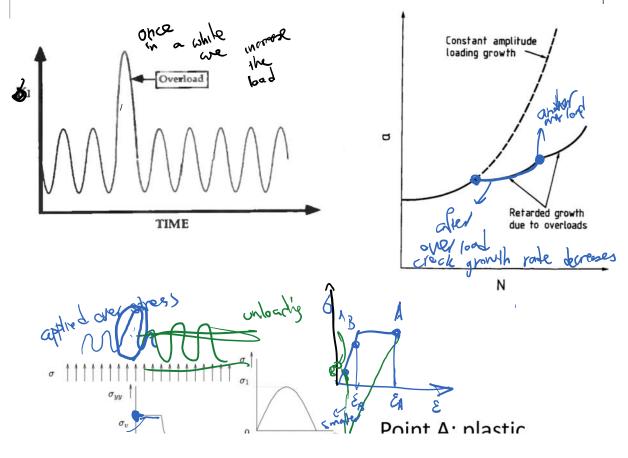
Miner's rule for variable load amplitudes

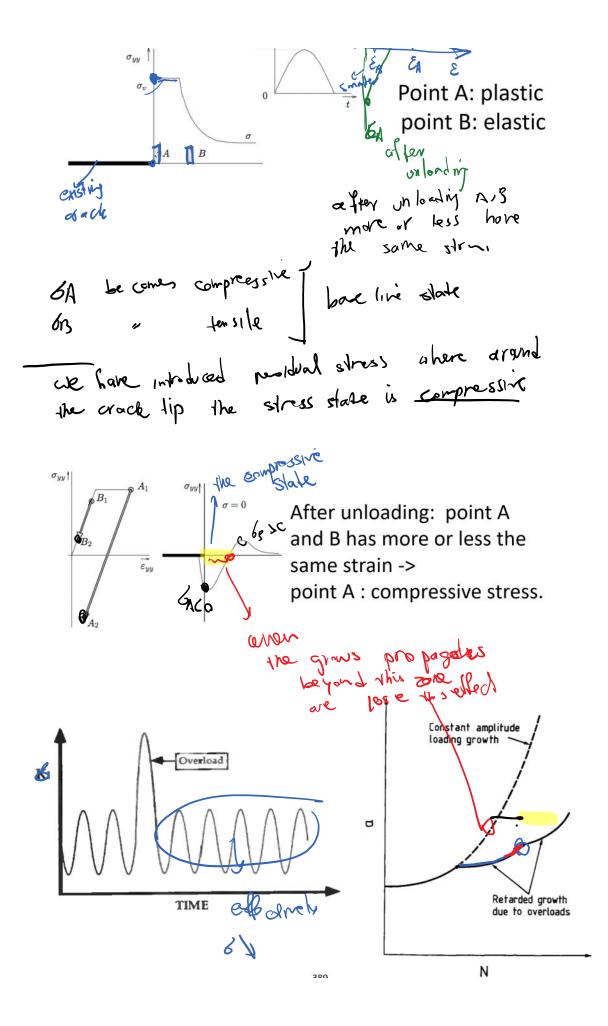

Influence of sequence of loading

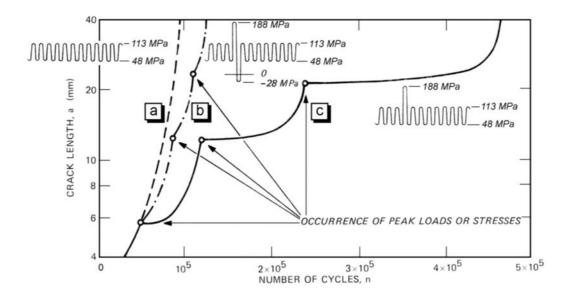
The component is assumed to fail when the total damage becomes equal to 1, or

$$\sum_i rac{n_i}{N_{fi}} = 1$$

It is assumed that the **sequence** in which the loads are applied has no influence on the lifetime of the component. In fact, the sequence of loads *can* have a large influence on the lifetime of the component.

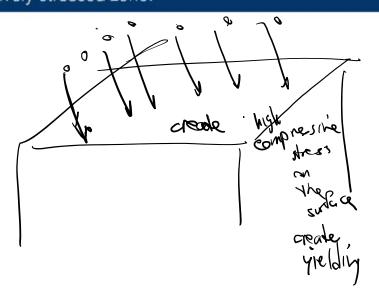

Variable amplitude cyclic loadings

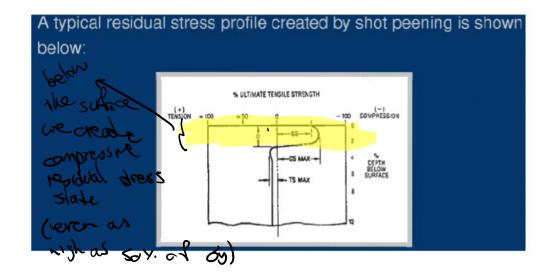



Approaches to increase fatigue life

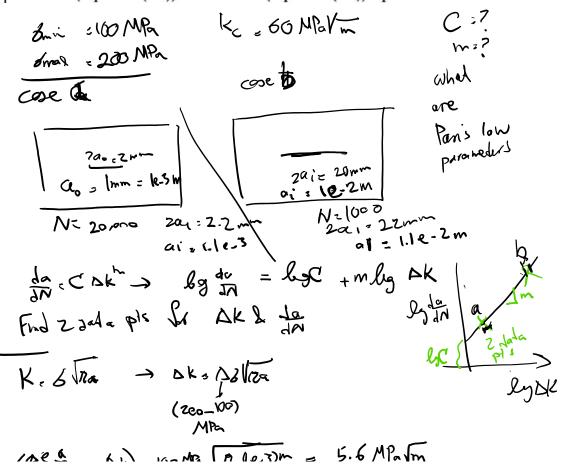
Overload and crack retardation

It was recognized empirically that the application of a tensile overload in a constant amplitude cyclic load leads to crack retardation following the overload; that is, the crack growth rate is smaller than it would have been under constant amplitude loading.





Fatigue crack inhibition: Shot-peening


Shot peening is a cold working process in which the surface of a part is bombarded with small spherical media called *shot*. Each piece of shot striking the surface acts as a tiny peening hammer, imparting to the surface a small indentation or dimple. The net result is a layer of material in a state of residual compression. It is well established that cracks will not initiate or propagate in a compressively stressed zone.

Examples for Fatigue

A large plate contains a crack of length $2a_0$ and is subjected to a constant-amplitude tensile cyclic stress normal to the crack which varies between 100 MPa and 200 MPa. The following data were obtained: for $2a_0 = 2$ mm it was found that N = 20,000cycles were required to grow the crack to $2a_f = 2.2$ mm, while for 2a = 20 mm it was found that N = 1000 cycles were required to grow the crack to $2a_f = 22$ mm. The critical stress intensity factor is $K_c = 60$ MPa \sqrt{m} . Determine the constants in the Paris (Equation (9.3)) and Formam (Equation (9.4)) equations.

$$MR = (AP)_{1} (BOMA FR (P(P)) = 5.6 MPN = 5.6 MPN = (AP)_{1} (BOMA FR (P(P)) = 5.6 MPN = (AP)_{1} (AP)_{1} = (AP)_{2} = 52.9 m$$

$$(AP)_{2} \Rightarrow \frac{MA}{AV} = \frac{1 \pm 2.3 - 12.5}{200^{12}} = 52.9 m$$

$$(AP)_{2} \Rightarrow (AP)_{1} = (AP)_{2} = 10^{-6}$$

$$(AP)_{2} \Rightarrow (AP)_{1} = APC + m AP AK = 5.6 MP = Im (AP)_{1} = 10^{-6}$$

$$(AP)_{2} \Rightarrow 52.7 m (AK)_{1} = 52.7 m (AK)_{1} = 10^{-6}$$

$$(AP)_{2} \Rightarrow 52.7 m (AK)_{1} = 10^{-6}$$

$$(AP)_{2} \Rightarrow 52.7 m (AK)_{2} = 52.7 m (AK)_{2} = 10^{-6}$$

$$(AP)_{2} \Rightarrow 52.7 m (AK)_{2} = 52.7 m (AK)_{2} = 10^{-6}$$

$$(AP)_{2} \Rightarrow 52.7 m (AK)_{2} = 52.7 m (AK)_{2} = 10^{-6}$$

$$(AP)_{2} \Rightarrow 52.7 m (AK)_{2} = 10^{-7}$$

$$(AP)_{2} =$$

$$R = G_{max} = \frac{100 \text{ MP}_{-1.5}}{200 \text{ MP}_{-1.5}}$$

$$K_{C:60 \text{ MN}}$$

$$NK = \left(5.6 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{-} \text{ fm core o} \right)$$

$$\left((7.72 \text{ MP}_{$$