Voigt notation

$$
\begin{aligned}
& \boldsymbol{\sigma}=\left[\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{array}\right] \rightarrow \text { Voigt steos } S=\left[\begin{array}{l}
S_{11} \\
S_{22} \\
S_{12}
\end{array}\right] \\
& \sigma_{21}=\sigma_{12} \\
& \text { 3D } 3 \times 3 \\
& s \rightarrow 6 \times 1 \\
& \varepsilon_{2}\left[\begin{array}{cc}
\varepsilon_{11} & \varepsilon_{12} \\
\varepsilon_{21} & \varepsilon_{22}
\end{array}\right] \xrightarrow{\substack{\varepsilon_{12} \\
\text { (enginemin) } \\
\text { stram }}} \rightarrow \quad \gamma=\left[\begin{array}{c}
\varepsilon_{11} \\
\varepsilon_{22} \\
2 \epsilon_{12}
\end{array}\right]
\end{aligned}
$$

$$
\bar{\delta}=\overline{\overline{\mathcal{C}}} \bar{\varepsilon}
$$

\longrightarrow Vogt notad -
vagt sices stimess stain

if the $\underset{\sim}{\text { matenal }}$ is isotropic'

$$
\begin{aligned}
& \tilde{C}_{13}=\tilde{C}_{23}=0 \\
& \tilde{C}_{23}=\frac{\tilde{C}_{11}}{2}-\widetilde{C}_{12} \\
& \tilde{C}_{33}=\frac{\tilde{C}_{11}}{2}
\end{aligned}
$$

last time we haid
Baiance s live or momentum (statios)
$\begin{aligned}\text { PDE }) \nabla \cdot \sigma+p b=O & \text { (Eql) }\left\{\begin{array}{l}\sigma_{111} 1+\sigma_{r 22}+b_{1}=0 \\ \sigma_{12,1}+\sigma_{22,2}+p b_{2}=0\end{array}\right.\end{aligned}$

$$
\begin{aligned}
& 3 \text { unknowns } \\
& \sigma_{11}, \sigma_{12}, \sigma_{a z}
\end{aligned}
$$

$$
s=\left[\begin{array}{l}
\delta_{11} \\
\sigma_{2} \\
\sigma_{2}
\end{array}\right] \begin{aligned}
& \\
& f_{2 x}+9=0 \\
& (A \delta), 49=0
\end{aligned}
$$

need 1 more eqn
Const. eqna

$$
\begin{aligned}
s= & \left.\begin{array}{c}
3 \text { more equi } \\
s_{11} \\
s_{22} \\
s_{12}
\end{array}\right]= \\
& \text { we slill need } 3 \text { more eqns }
\end{aligned}
$$

Compatibility Equation:

\downarrow

$$
\gamma=\left(\begin{array}{l}
\xi_{21} \\
E_{2} \\
2 E_{12}
\end{array}\right):\left[\begin{array}{l}
\frac{u_{v i}}{v_{2,2}} \\
v_{1,2}+U_{2,1}
\end{array}\right]
$$

3 equs added ($E_{1 V} E_{22}, 2 G_{2}$)
2 unknawns added $\left[\begin{array}{l}u \\ u_{2}\end{array}\right.$

$$
U_{i, j}=\frac{\partial U_{i}(\vec{x})}{\partial x_{j}}
$$

BC's
$\bar{\zeta}=\frac{\bar{E}}{\bar{c}} \overline{\dot{c}}$
$\overline{\mathcal{E}}=\frac{\nabla \mu+\nabla^{\top} u}{2}$

$$
b<C\left(\nabla \frac{u+\nabla u}{2}\right)=C \nabla u
$$

Unknown is $\quad\left[\begin{array}{l}U_{1}\left(x_{1}, y_{2}\right) \\ U_{2}\left(x_{1}, x_{2}\right)\end{array}\right]$

$$
\begin{aligned}
& R_{i}(U)=\nabla_{0} G(\varepsilon(u))+p b \\
& =\operatorname{Ta}_{0} \sum_{1}^{\sqrt{y}}+2 b \\
& \forall x \in D
\end{aligned}
$$

2nd order PDE

$$
M=2 \rightarrow m=\frac{M}{2}=1
$$

Dridilet $B C$

$$
\forall x \in \partial \Psi_{u} \quad u\left(x_{1}, x_{2}\right)-\bar{U}\left(x_{1}, x_{2}\right)
$$

Neuman BC:
$\forall x \in \partial D_{f} \quad t\left(x_{1}, x_{2}\right)=\bar{t}\left(x_{1}, x_{2}\right)$

sy unnety of C

order=o

rachis vector

Weighted Residual Mend (WRM)

residuals
Welergheder we mollify these ty weights

Ill show next times how we can drop this term by looking in a solution space wherein $\mathrm{Ru}(\mathrm{u})$ is strongly zero.

