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An easier way to calculate first variation of a functional
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Motivation consider a function from R2 -> R (a function of two parameters) 2 A
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This is our weak statement ( %\A BXN) 3



Functionals Optimality condition

@ For a function f: B — R we observed that a necessary condition for optimality of f at 2o
was, 0f = %é(.r(.)._\.r =1,

@ What do we expect a necessary optimality condition for a functional IT be?
a necessary extremum condition for /7 at y is

811 = 0, where 511 is a shorthand for 611(y, 5y) (92)

@ How to evaluate 4177

du dny ol o _dy oIl
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Note the similarity to the corresponding conditions for a function f(x): 6f = :lr Ar=0

s o d"y _d"y  d"éy d"y d"sy
Having a dy = § =y + dy = B R e s o = Md:" —

Thus, noting that y'") := d—ﬁ (93) can be rewritten as,

mn=1y.y,..., y') = Qﬁll —)l/ AJ +- 4 ” #'™) .| (95)
¢ ! ()q""
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You can refer to the links on the course website that prove eqn (95) above and the
optimality condition for functional

. Useful links for energy method (not necessary to apply energy approach in the derivation of weak statement) - link Functional optimization: How an
equation for first variation of a functional (e.g. equations 93, 95 on slide 78) can be derived. You clearly do not need to read this document for this course
and this is only provided as a related material for students that want to understand the logic behind the derivation of equations 93, 95. - link Exact
calculation of total, first, and second variations for a simple example: In this document the total variation of the energy functional for the bar problem is
directly calculated. The first and second variations are directly obtained and higher variations are zero for this simple functional. It is observed that the first
variation is exactly the same as what we would have obtained by equation 96 on slide 78.

From <http:, com/teaching/me-517-finite-elements/>
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Example: Euler Bernoulli beam
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We determined the internal energy of the beam to be (cf. (85¢)),
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http://rezaabedi.com/wp-content/uploads/Courses/FEM/FunctionalOptimum.pdf
http://rezaabedi.com/wp-content/uploads/Courses/FEM/EnergyMethodDirectMinimization.pdf
http://rezaabedi.com/teaching/me-517-finite-elements/
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Weak Statement (WS)
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The weak statement for the Euler Bernoulli problem and the BCs in the figure are:

Find y € V= {ue C*D) | u(0) =4, ‘;J(U) = 6}, such that, (62a)
dx
Yw € W= {u € C*(D) | u(0) =0, ixi(l)) =0} (62b)
(
()-—/ Iid Yk d 'l u'q] dr + {—di M +wV } (62¢)
0 dz? 1 x=L

Two more points:

Q1) we used PDE & natural BCs before, multiplied them by weights and after IBP obtained the weak statement. Energy method, directly gives us the weak statement. Can
we obtain the PDE and natural BCs from energy methods?

Energy method to Strong Form and Boundary Conditions

We realized the convenience of energy methods in
deriving the weak form in one step. They can also

be used to strong form and boundary conditions by 7.
the common approach of integration by part Excwntial busimbary
(divergence theorem in D > 1). O=y =4
The we FrommtIOT T s ’

L L
s = [, sy (z)Ely" (z) dz — /U dy(x)g(x) dx + Sy(L)V — 6y’ (L)M =0 \ -7/ _'E K PS

Two consecutive integration by parts yield:
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Energy Method vs. Principle of Virtual Work

@ Principle of virtual work or virtual displacement in solid mechanics states that if u
is the solution to a boundary value problem, the virtual internal and external works
produces by admissible virtual displacements du are equal.

@ Virtual displacements éu refer to displacements that are zero at essential boundary
values (so that solution displacement plus virtual displacement &t = u + du (cf.
(79)) as another admissible trial function also satisfies essential boundary
conditions).

@ Virtual Displacement /Virtual work is basically the equation we obtain by
minimizing the energy function 417 = 0.

@ Similar principles (virtual temperature for heat flow in solids and virtual velocities
for fluid flow) are also directly derived from 611 = 0.

@ While principle of virtual work can be obtained from 417 = 0, it is often quite easy
to directly write and equate internal and external works for a given problem.

86/ 456
Virtual work: 1D solid bar
ap,
hw% £ Natural boundary
w=i - — ap,
x L

Equation (98) can be written as,

Find u € V = {v e C'([0,L]) | v(0) = @}, such that,

You € W= {v € C'([0, L]) | v(0) = 0}

-6u  F(u(z))
L e, L
/ ou'(z) EAY' (z) dx = / du(z)q(x) dx + éu(L)F (109)
0 0
Virtual ln;;nal Work Virtual Extvemal Work
Note that the internal work differential is:
d Su (ll' du + "ll' dudr
dV = F(u(x)).(6u + Id‘u«l.r) — F(u(x)).0u T —
dés ) F(u(x EA4:
= X F(u(z))dz (110) F(u(z)) (u(=)) ar
or ‘I‘
87 /456

We'll do some examples of virtual work next time

Discretization and numerical examples:
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Discretization: Going from continuum solution to "discrete"
solution, where we have a finite number of unknowns
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