From last time

$$\begin{aligned}
\mathcal{R}_{[a,q]}^{2} &= 1 + a_{1}^{a} + 2 a_{2}^{a} - 2a_{1} - 8a_{2} + 8a_{1}a_{2} \\
\nabla \mathcal{R}_{a,t_{2}}^{2} &= 0 \quad \text{minimize } R^{2} \\
& \begin{bmatrix} 2a_{1} + 8 & a_{2} - 2 \\ 8a_{1} + 4a_{2} - 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\
& K = \begin{bmatrix} 2 & 8 \\ 8 & 48 \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \end{bmatrix} \implies a = \begin{bmatrix} -2 \\ -4 \end{bmatrix} \\
& \begin{bmatrix} 4 \\ 12 \end{bmatrix} = 1 + 2\mathcal{R} - \frac{1}{4} \times^{2}
\end{aligned}$$

Much easier way to do the LS method

Basically, least square method is a WRS wherein the weights for Ri (inside) and Rf (natural boundary) are different

FEM Page 1

FEM Page 2

Bar example, n = 3, Comparison of solutions

Bar example, n = 4, Comparison of solutions

1D FEM in most cases matches the exact solution at the nodes

We minimize R2 (error in PDE + natural BC) but this does not result in smallest error in solution (uh - u)

Talking about errors:

Bar example, n = 3, Comparison of solutions

Bar example, n = 4, Comparison of solutions

Exact sln $u(x) = \begin{cases} \frac{x^3}{3} - x^2 + 2x + 1 & 0 \le x \le 1 \\ x + \frac{4}{3} & 1 < x \le 2 \end{cases}$ (179) 142/486

Bar example, Error Convergence

System Matrix K is nonsymmetric for Subdomain, Collocation and Finite Difference methods.

System Matrix K is always symmetric for Least Square method.

• For this self adjoint problem K is symmetric for Galerkin methods ($\mathbf{w} = [x^i]$ and FE hat functions).

• Finite Element trial functions are local leading to sparse structure of K matrix.

Spectral trial functions are continuus and span the entire domain. The matrix K is dense.

Spectral methods have better convergence properties than FE methods, while their use is most often is limited to simple geometries.

200 / 456

Always symnetic

Observations: FE versus spectral methods

Feature	Finite Element	e Element Spectral Methods	
Trial Functions Example	Local / Finite Regularity hat functions	Globally Smooth $\phi = [x \ x^2 \ x^3]$	
	$\begin{array}{c} \phi_1(\frac{1}{2}) = 1 & \phi_2(\frac{1}{2}) = 1 & \phi_2(2) = 1 \\ w_1 = \phi_1 & w_2 = \phi_2 & w_3 = \phi_3 \\ 1 = 1 & = 1 & = 1 \\ \end{array}$	$ \begin{array}{c} [W] \\ w_3 = \phi_3 = x^3 \\ w_2 = \phi_2 = x^2 \\ w_1 = \phi_1 = x \\ w_1 = \phi_1 \\ $	
Matrix K	Sparse	Full (diagonal for orthogonal ϕ)	
Example	$\begin{bmatrix} 4 & -2 & 0 & 0 \\ -2 & 4 & -2 & 0 \\ 0 & -2 & 4 & -2 \\ 0 & 0 & -2 & 2 \end{bmatrix}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	
order of accuracy of $u^{h}(p)$	fixed (e.g., $p = 1$)	\nearrow vs. n (e.g., $p = n$)	
Convergence	Linear: $e = Ch^{\alpha}$	higher than linear	
Example	$\alpha = 2$	exponential	
	0.0		
		15	
	12 00 12 0 42	log ₁₀ ferror	
	-0.4 -0.2 -0.2 -0.2 -0.2 -0.2 -0.4 -0.2 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	15 34 .03 iog ₁₀ (h) 52 54	
Geometry	Very general geometries	simple (e.g., rectangular) in practice to get diagonal K	

210/456

Diagonal matrix for spectral methods

- The global nature of trial functions ϕ in spectral method results in full K matrices that are expensive to solve.
- To circumvent this problem we employ trial functions that make K diagonal.
- In weak statement $K_{ij} := \mathcal{A}(\phi_i, \phi_j) = \int_{\mathcal{D}} L_m^w(\phi_i) L_m(\phi_j) \, \mathrm{dv}$
- If the problem is self-adjoint A(.,.) is an inner product and we can construct an orthogonal trial function basis \u03c6_i for example using Gram Schmidt method.
- Given the particular form of A (from L^w_m and L_m) and domain of integration D ([0 1], [-1 1], semi-infinite, infinite, etc.) we employ various trigonometric and orthogonal

polynomial spaces. Some examples are:

- $\phi_k(x) = e^{ikx}$ Fourier spectral method.
- $\phi_k(x) = T_k(x)$ Chebyshev spectral method.
- $\phi_k(x) = L_k(x)$ or $P_k(x)$ Legendre spectral method.
- $\phi_k(x) = \mathcal{L}_k(x)$ Laguerre spectral method.
- $\phi_k(x) = H_k(x)$ Hermite spectral method.

where $T_k(x)$, $L_k(x)(P_k(x))$, $\mathcal{L}_k(x)$, and $H_k(x)$ are the Chebyshev, Legendre, Laguerre, and Hermite polynomials of degree k, respectively.

The orthogonal property of these functions is for simple geometries. That is why spectral
methods are more popular for simple geometries where we can take advantage of their
exponential convergence property while keeping computational costs low by using
orthogonal trial functions.

211 / 456

For simple geometries we can get exponential convergence with spectral methods with diagonal or close to diagonal matrix equations, but for complex geometries FEM is very versatile.

The error of FEM is in fact:

FER

error = Ch

Basically, if the solution is not smooth enough (hydraulic jumps, shocks, ...), it's NOT worth using higher order FEMs, Discontinuous

Final comment on numerical solutions we obtained: Potentral energe 1)(avar) Sh. Truend Uerach и' alvaz ()= What satisfis escended , PC Uexa ch Uh = \$ +0, \$ +02 \$2 e.g \$ = 2x, x } Jp=1 describe trial funchi for my realer kin has the least energy compared to other approaches. In fact, one shew Can that for Galerin method erior (l. (1exad) "energy of pror" 15 minimum

Approach	Equation	Figure	Discretization	
Balance Law (20)	$ \begin{array}{l} \forall \Omega \subset \mathcal{D} : \int_{\partial \Omega} (\mathbf{f}.\mathbf{n}) \mathrm{ds} - \\ \int_{\Omega} \mathbf{r} \mathrm{dv} = 0 \end{array} $		Change $\forall \Omega$ to $\{\Omega_1, \Omega_2, \dots, \Omega_n\}$	Sub Iman
Strong Form (23)	$orall \mathbf{x} \in \mathcal{D}: abla . \mathbf{f} - \mathbf{r} = 0$		Change $\forall \mathbf{x}$ to $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$	Colleration
Energy Method (80)	$\forall \tilde{y} \in \mathcal{V} : \ \Pi(y) \le \Pi(\tilde{y})$	$\tilde{y} = y + \delta y$ y minimizes $\Pi(\tilde{y})$	$ \begin{array}{rcl} \forall \{\tilde{a}_1, \dots, \tilde{a}_n\} & : \\ \Pi(a_1, \dots, a_n) & \leq \\ \Pi(\tilde{a}_1, \dots, \tilde{a}_n) & \Rightarrow \\ \frac{\partial \Pi}{\partial a_1} = \dots = \frac{\partial \Pi}{\partial a_n} = 0 \end{array} $	- Rifz

