FEM 2021/11/02

$n_{1} 1.60$

$\stackrel{\rightharpoonup}{F_{i}}=$ ?

$$
\begin{gathered}
f d_{b} f_{3} \\
w_{f=}=\left[\begin{array}{l}
U_{1} \\
U_{2} \\
U_{3}
\end{array}\right]=? \\
F_{f}=\left[\begin{array}{l}
F_{1} \\
F_{2} \\
l_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]}_{F_{n}}
\end{gathered}
$$

this is $F_{\text {or }}$ nodal force vector

$$
\begin{aligned}
& F=F_{e}+F_{n} \\
& \& \quad F_{e}=F_{r}+F_{n}
\end{aligned}
$$

trussecments are 1D/if we ignore weight $F_{r}=0$


$$
a_{e_{3}}=\left[\begin{array}{c}
.5 \\
0 \\
? \\
?
\end{array}\right]_{9 \times 1} a_{1}^{e_{3}}=a_{\mu_{p_{3}}(1)}
$$

$$
\overrightarrow{F_{i}}=\text { ? }
$$

$$
M_{l_{3}}=[\overline{2}, \overline{3}, 1,2]_{1 \times 4}
$$

map of local to glebol deffer

$$
n_{f}=3 \rightarrow K\left(=K_{f f}\right) \text { is } 3 \times 3
$$



| K |
| ---: |\(=\left[\begin{array}{c|c|c|}6 \\

.221 \& -.221 \& \\
\hline-.221 \& 221 \& \\
\hline \& \& \end{array}\right]\) this was the contubatuen
clement 2 to global $K$ convrosction to, global $\mathrm{Fe}_{\mathrm{e}}$
 -
in calculating

$$
\begin{aligned}
& \left.f_{0}^{e_{3}}=\left[\begin{array}{l}
0.1105 \\
-0.1105 \\
-.1105 \\
0.1105
\end{array}\right] \rightarrow f_{3}^{e_{3}} f_{b}^{e_{3}} \frac{\frac{2}{2-.1105+}}{\frac{1}{2} \frac{1105}{2}-.1105}\right] \\
& n_{f}=3 \rightarrow\left(T_{e}\right)=\left[\begin{array}{l}
.1105 \\
\hline .105 \\
\square
\end{array}\right]
\end{aligned}
$$

Truss Example


- Table below summarizes parameters for each element:

| $\epsilon$ | $L^{e}$ | $\theta$ | $c$ | $s$ | $\mathbf{M}_{i}^{e}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\epsilon_{1}$ | 2.8 | $90^{\circ}$ | 0 | 1 | 1 | 3 | 2 | 3 |
| $\epsilon_{2}$ | 2 | $\tan ^{-1}\left(\frac{3}{6}\right)$ | 0.8 | 0.6 | 1 | 3 | 1 | 2 |
| $\sigma$ | $1.6 \sqrt{2}$ | -45 |  | -1 | 2 | 3 | 1 | 2 |

- Local stiffness matrices are given by (390):

$$
\mathbf{k}^{e}=\frac{A E}{L}\left[\begin{array}{c|c}
\mathbf{k}_{b} & -\mathbf{k}_{b} \\
\hline-\mathbf{k}_{b} & \mathbf{k}_{b}
\end{array}\right], \mathbf{k}_{b}=\left[\begin{array}{cc}
c^{2} & c s \\
c s & s^{2}
\end{array}\right]: \mathbf{k}^{e}=\frac{A E}{L}\left[\begin{array}{cccc}
c^{2} & c s & -c^{2} & -c s \\
c s & s^{2} & -c s & -s^{2} \\
-c^{2} & -c s & c^{2} & c s \\
c s & s^{2} & -c s & -s^{2}
\end{array}\right]
$$


$B C$ into nodal forces, and finally $f_{D}^{\epsilon}=\mathbf{k}^{e} \mathrm{a}^{e}$

$$
322 / 456
$$

Truss example: Assembly of global system


firs get nod frocesacting an elements

$F^{e_{3}}=k^{e_{3}} a_{j}^{e_{3}}$

we de the same for eqkervo get


Reaction forces

$$
\begin{aligned}
& F_{1}^{2}=F_{1}+F_{1}=5715 \\
& F_{1}^{3}= \\
& F_{2}^{3}=
\end{aligned}
$$



- First, we compute reaction forces by adding up forces from individual elements that contribute to reaction forces:

$$
\begin{aligned}
& R_{1}^{2}=f_{1}^{\epsilon_{1}}+f_{1}^{\epsilon_{2}}=0+0.5715=0.5715 \\
& R_{1}^{3}=f_{3}^{\epsilon_{1}}+f_{1}^{\epsilon_{3}}=0+-0.5714=-0.5714 \\
& R_{2}^{3}=f_{4}^{\epsilon_{1}}+f_{2}^{\epsilon_{3}}=0.4285+0.5714=0.9999
\end{aligned}
$$

## Sanity check (not really needed)

Truss Example: verification of forces at free dofs


- Also, if we want to double-check our calculations on free dols. This step is not needed and it may be done as a verification for hand calculations:

$$
\begin{aligned}
& F_{1}^{1}=f_{3}^{\epsilon_{2}}+f_{3}^{\epsilon_{3}}=-0.5715+0.5714=-0.0001 \\
& F_{2}^{1}=f_{4}^{\epsilon_{2}}+f_{4}^{e_{3}}=-0.4286+-0.5714=-1=\bar{F} \\
& R_{2}^{2}=f_{2}^{e_{1}}+f_{2}^{c_{2}}=-0.4285+0.4286=0.0001
\end{aligned}
$$

Truss Example: Observations

- The fact that our free doff forces in (398) are the values enforced is a necessary (but not sufficient) check on the correctness of our FEM solutions.
- We observe that exact (direct solutions in (399)) match our FEM solution in the last table and (397).
- The reason FEM and exact solutions match is that FEM shape functions (linear displacement within each bar) can capture the exact solution. In general, whenever, FEM approximate solution space can capture exact solution, FEM recovers the exact solution.
- Small error between FEM and direct method or about 0.0001 errors in some reaction and sum of forces in FEM method are finite numerical precision error which are different from discretization errors caused by approximating an infinite solution space by FEM shape functions. The former is caused by working with finite number of digits in our calculations.


$$
\begin{aligned}
& \left.\Vdash_{1}^{U_{3}}+\begin{array}{l}
U_{4} \\
U_{5} \\
U_{6}
\end{array}\right]^{2}=\left(U_{p}\right.
\end{aligned}
$$

$$
\begin{aligned}
& { }_{\text {ghbald }}^{\text {atevel }} f_{D}
\end{aligned}
$$

$$
\begin{aligned}
& \text { if we on'y ossemble }
\end{aligned}
$$ free dols

numbens free dofs $\rightarrow$ owe only a ssamble Keff - Er ationatuclly assenbiled

- much cehepper

Truss example: Assembly of global system $(f+p)$




Truss example: Solution of global system $(f+p)$

- The global system is,

$$
\begin{aligned}
\mathbf{K U} & =\mathbf{F} \text { where } \\
\mathbf{K} & =\left[\begin{array}{ccc|ccc}
0.5410 & 0.019 & -0.24 & -0.32 & -0.221 & 0.221 \\
0.019 & 0.401 & -0.18 & -0.24 & 0.221 & -0.221 \\
-0.24 & -0.18 & 0.5371 & 0.24 & 0 & -0.3571 \\
\hline-0.32 & -0.24 & 0.24 & 0.32 & 0 & 0 \\
-0.221 & 0.221 & 0 & 0 & 0.221 & -0.221 \\
0.221 & -0.221 & -0.3571 & 0 & -0.221 & 0.5781
\end{array}\right]= \\
\mathbf{F} & =\left[\begin{array}{l}
F_{1} \\
F_{2} \\
F_{3} \\
F_{4} \\
F_{6} \\
F_{6}
\end{array}\right]\left[\begin{array}{c}
0 \\
-1 \\
0 \\
R_{2}^{2} \\
R_{1}^{3} \\
R_{2}^{3}
\end{array}\right]=\left[\frac{\mathbf{F}_{f}}{\mathbf{F}_{p}}\right]
\end{aligned}
$$

- The unknown quantities $\mathrm{F}_{p}$ and $\mathrm{U}_{f}$ are highlighted.

Please read from slide 329 to 335

we need
continuity for shape (basis) funding reduce is $5 y 1$

Weak stadement

$$
\begin{aligned}
& \int_{0}^{L} \underbrace{\omega}_{0} \underbrace{E I}_{D} y^{\infty} d x= \\
& \int_{0}^{L} w q d x-y(L) \bar{V}+y^{\prime}(L) \bar{M} \\
& L_{m}^{\infty}(\omega)=w^{\prime} \quad L_{m}=()^{\prime \prime} \\
& B= L_{m}(N)=N^{\prime \prime}
\end{aligned}
$$

