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FEM Solver Objects: 4. Node: Data
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public:
void set_nndof(int nndofln);
void UpdateNodePrescribedDofForces(VECTOR& Fp);
ID id;
VECTOR coordinate;
vector <PhyDof> ndof;
int nndof;// number of dofs
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FEM Solver Objects: 5. Dof: Data
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FEM Solver Objects: 5. Dof

Upy (¢

L Ugyla)f =0

Quadrilaterial
solid + thermal
element

0 Ugs(al")

N4 GUsy a5 105 Noogay) TG W
F4 f=0 f=M

Examples of dof for the structure shown are:

dof P pos v f field index
1of ny | true 1 unknown /&
3 of ny | false 1 unknown 0 U 2
3 of ns | false 10 unknown M ] - (a vector in 3D)
2 of ng true 7 unknown U 2
CFEM\PhyDof.h
class PhyDof
{
public:
PhyDof();

bool p; // boolean: whether the dof is prescribed

int pos; // position in the global system (for free and prescribed)
double v; // value of dof

double f; // force corresponding to dof

// Fcan be stressican be (0, 1) sigma_{01}

//  FieldF;
//  INDEX i;
|3
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Solution steps

The steps for FEM solution are:
@ Set Element nodal dofs.
@ Set global dofs using element dofs.
© Compute ns from ngyoe and ny, and resize and zero stiffness matrix and force vector.
©Q Set global prescribed dofs.
© Set global free dofs.
@ Set dof (free + prescribed) positions.
@ Set F(Fy).
@ Set element dof maps Mjy.
©Q Set element (prescribed) dofs.
@ Compute element stiffness matrix and force vectors.
@ Assemble element stiffnesses and forces to global system.
@ Solve for (free) dofs a from Ka = F.
@ Assign a to nodes and elements.
@ Compute prescribed dof forces: F,, (if needed).
@ Compute (if needed) output nodes and elements.
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These are all class members that you'd be storing in FEM solver
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For the term project, we really don't have the complex steps 1 and 2 since we deal with these structures

Steps 1 & 2: Simplified limited case

Truss ]__ u, Frame _ T T
dofs: u,v,0 =||@ ' G
@ Ndpn = 3

@ FEM implementation| become considerably simpler for problems where all elements are of
the same type (regardless of number of physics per element).

@ In this case, we define:

ndpn := Number of dof. per node denoted by ndofpn (448)

@ There would be identity map between element nodal dof and global nodal dofs. That is,

thava ic tha cama cae Af dabe vicnd fae haek
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ndpn := Number of dof. per node denoted by ndofpn (448)

@ There would be identity map between element nodal dof and global nodal dofs. That is,
there is the same set of dofs used for both.

@ Figure above shows two of such examples:

CFEM\TrussTest.txt this is the INPUT file for the truss example in Truss section.
dim 2 - 2)

ndofpn 2 —_— 13“-2 \>Q»f V)o(\/\’

Nodes
nNodes 3
id crd
1161.2
200
302.8

Elements LE/\/\ N O(L‘f& Q)‘W W\WP

@neNodes(e@oges ;

221
15&/\/\'\0\* VY\(A;("‘;\V& 7y Moég,og

F3  aans Thoss Qe 1 ber .2 htm~ | 4 Jame

This would be the end of steps 1 and 2:
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Step 3: Set global number of dofs, stiffness, and force.

Tyla) 44

Quadrilaterial
solid + thermal
element

ngof)is computed in step 2.

@ ny, Jnumber of preskribed dofs) is an input to FEM analysis.

Ndof — Np is the number of free dofs.

Ngof = l*} = =10

@ We size and zero K(Kjy) : ng x ns and F(Fy) : ng (member of FEM Solver).

@ While not necessary, for simplicity we also size and zero F,, : n;, (member of FEM
—

Solver).

PrescribedDOF

np 3

node node_dof_index value
210.0

3105

320.0

b

Step 4: Set global prescribed nodal dof

nd= 2,26 np=% — 7f=< Ak -nped
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PrescribedDOF

np 3
node node_dof_index value

310.5

3200

Step 5: Set global free nodal dof

We need to read nonzero forces

FEM Page 5



FreeDofs
nNonZeroForceFDOFs 1
node node_dof_index value
12-1.0
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We need to read nonzero forces

FreeDofs M&\Wa g-,(‘wj P’Sg S - %

nNonZeroForceFDOFs 1

node node_dof_index value FQ& P 2

12-10 X g
We need to read nonzero forces
FreeDofs
nNonZeroForceFDOFs 1

node node_dof_index value
12-1.0

Step 6: dof positions; Step 7: Set F(F)

Quadrilaterial
solid + thermal
element

A bit complicated in general

We go with simple structures that are discussed in this project:

Step 8 forms element dofMap and it's very difficult!

Step 8: Element dof maps M <ndd TR 2
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@ As mentioned, Mg is a vector of size nfj ¢ that maps elements dofs to global positions.
@ For element 1, dofs are ordered as (loop over nodes, then loop over dofs for the node):

ai = [af' a3' -+ af}] ] —
=[Ti Ust Up |To U2 Up |Ts Usa Uy |Ts Uea Ups | Q %—QUMA——

@ We need to map these dofs to global dofs and have their position in My vector. For
example, 1st dof of node 1 (aj' = Ty) is mapped to first dof of n3 which has position 2. =z
@ 2nd dof of node 3 (ag! = Uy2) is mapped to 2nd dof of ny which has position 2(—2). S

416 / 456

Again, for step 8, we use a simple implementation for the problem in hand:

Step 8: Element dof maps M;: Simplified limited case

s

Truss [ u, Frame _ FERNES
dofs: u.v = dofs: u,v,0 =||@ ' G
Ndapn = 2 @ MNdpn = 3 ’ )

(1 4
w0 4

@ in Steps 1 and 2 we mentioned that FEM implementation becomes considerably
simpler if we assume all nodes share exactly the same set of dofs.

@ Examples are bars, beams, trusses, and frames.
@ In (448) we defined ngp, (ndofpn) as,
Ndpn := Number of dof. per node

@ In this limited scenario ith dof of node in element is mapped to ith dof of its
corresponding global node.
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ng =1 np*” nTe : 7%6' ' m
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Truss | _u, Frame TTITIITIT
dofs: u,v = dofs: u, v, 0 =
Ndpn = 2

@® MNdpn = 3

@ Similar to steps 1, 2, and 8, step 9 can be greatly simplified if we assume all nodes share
exactly the same set of dofs.

@ Noting ngp,, (ndofpn) = Number of dof. per node, simplified merged steps 8 & 9 are:
dofs = zeros(nedof) element dofs (edof) resized to number of element dofs and zeroed
ecdof = 1 dof counter for element
for en = 1: neNodes number of element nodes

gn = LEM(en) global node number for element node en
for endof = 1: ndofpn This number is fixed now, e.g., 2 for 2D trusses

if (node(gn).dof(endof).p == true) gndof = endof, we bypass some steps here
dofs(ecdof) = node(gn).dof(endof).value; e dof val = cqrresponding global val
end

dofMap(ecdof) = node(gn).dof(endof).pos
ecdof = ecdof + 1  increment counter
end

end 422 /456
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