FEM Solver Objects: 4. Node: Data

^{};}

FEM Solver Objects: 5. Dof: Data

FEM Solver Objects: 5. Dof

Examples of dof for the structure shown are:

dof	p	pos	v	f	field	index
1 of <i>n</i> ₁	true	ī	T	unknown	T	1
3 of <i>n</i> 1	false	1	unknown	0	U	2
3 of <i>n</i> 5	false	10	unknown	\bar{M}	θ	- (a vector in 3D)
2 of <i>n</i> ₆	true	7	\bar{y}	unknown	U	2

399 / 456

CFEM\PhyDof.h

class PhyDof {

public:

PhyDof();

bool p; // boolean: whether the dof is prescribed int pos; // position in the global system (for free and prescribed) double v; // value of dof double f; // force corresponding to dof

// F can be stress i can be (0, 1) sigma_{01}

- // FieldF;
- // INDEX i;
- };

Solution steps

The steps for FEM solution are:

- Set Element nodal dofs.
- Set global dofs using element dofs.
- \bigcirc Compute $n_{\rm f}$ from $n_{\rm dof}$ and $n_{\rm p}$ and resize and zero stiffness matrix and force vector.
- Set global prescribed dofs.
- Set global free dofs.
- Set dof (free + prescribed) positions.
- \bigcirc Set $\mathbf{F}(\mathbf{F}_f)$.
- **3** Set element dof maps \mathbf{M}_t^e .
- Set element (prescribed) dofs.
- O Compute element stiffness matrix and force vectors.
- Assemble element stiffnesses and forces to global system.
- 2 Solve for (free) dofs a from $\mathbf{Ka} = \mathbf{F}$.
- Assign a to nodes and elements.
- 0 Compute prescribed dof forces: \mathbf{F}_p (if needed).
- Compute (if needed) output nodes and elements.

402/456

(448)

These are all class members that you'd be storing in FEM solver

For the term project, we really don't have the complex steps 1 and 2 since we deal with these structures

Steps 1 & 2: Simplified limited case

• FEM implementation become considerably simpler for problems where all elements are of the same type (regardless of number of physics per element).

In this case, we define:

```
n_{dpn} := Number of dof. per node denoted by <u>ndofpn</u>
```

 There would be identity map between element nodal dof and global nodal dofs. That is, there is the same set of dofs used for both

Step 3: Set global number of dofs, stiffness, and force.

PrescribedDOF np 3 node node_dof_index value 2 1 0.0 3 1 0.5 3 2 0.0

Step 4: Set global prescribed nodal dof

PrescribedDOF np 3 node node_dof_index value 2100 3 1 0.5 3 2 0.0

Step 5: Set global free nodal dof

We need to read nonzero forces

FreeDofs nNonZeroForceFDOFs 1 node node_dof_index value 1 2 -1.0

Step 6: dof positions; Step 7: Set
$$\mathbf{F}(\mathbf{F}_f)$$

Eventually we end up with this

A bit complicated in general

We go with simple structures that are discussed in this project:

Step 8 forms element dofMap and it's very difficult!

- in Steps 1 and 2 we mentioned that FEM implementation becomes considerably simpler if we assume all nodes share exactly the same set of dofs.
- Examples are bars, beams, trusses, and frames.
- In (448) we defined $n_{\rm dpn}$ (ndofpn) as,

 $n_{dpn} :=$ Number of dof. per node

In this limited scenario *i*th dof of node in element is mapped to *i*th dof of its corresponding global node.

419/456

Step 9: Set element dofs a^e : Simplified limited case

 $\begin{array}{l} dofMap(ecdof) = node(gn).dof(endof).pos\\ ecdof = ecdof + 1 \quad \mbox{increment counter}\\ end\\ end \end{array}$

422/456