2D and 3D higher order elements
As a sample application I consider thermal heat conduction (HW1) for 2D quad elements:
Weak statement

lis
We focus on calculating k for 2D quad elements today

real geometry
Step 1: Formulate chape fendiens
Recall $A D \quad p=1$ element

 parent geometry

We can calculate B for $\}$ but not for x (challenge 1)
Integral needs to be pulled back to the parent element

$$
d V_{x}=d x_{1} d x_{2}=(?) d \xi_{1} d r_{1}
$$

How to address challenge number one:

parent geormetry

Coorduncte drechic neal germetry

$$
\delta \rightarrow x
$$

$o r$

$$
x \rightarrow 5
$$

Again we use FEM shape funchi interpothi: prapery:

$$
T^{h}\left(\xi_{1}, \delta_{2}\right)=T^{1} N^{1}\left(\xi^{1}, \xi^{2}\right)+T^{2} N^{2}\left(\xi_{1}, \xi_{2}\right)+T^{3} N^{3}\left(\delta_{1}, r_{2}\right)+T^{4} N^{4}\left(\xi_{1}, \xi_{2}\right)
$$

$$
\begin{aligned}
& \text { parent germety } \\
& \lambda^{\text {node } y} \\
& \text { cordincte drecticn } \\
& \text { real germetry } \\
& X_{1}\left(\xi_{1}, \xi_{2}\right)={\underset{1}{1}}_{N_{\left(s_{1}, \gamma_{2}\right)}^{1}+X_{1}^{2} N^{2}\left(\xi_{1}, \xi_{2}\right)+X_{1}^{3} N^{3}\left(\xi_{1} \xi_{2}\right)+X_{1}^{4} N^{4}\left(\xi_{1}, \xi_{2}\right)} \rightarrow \text { drech }
\end{aligned}
$$

This alwoys gives $X_{1}\left(\xi, 1 \delta_{2}\right)$ will be obtainid

Similar prods $X_{1} \rightarrow x_{2}$ will fronde $X_{2}\left(\delta_{1} s_{c}\right)$

$$
\begin{array}{r}
x_{1}\left(\varepsilon_{1}, s_{2}\right) \\
x_{2}\left(y_{1}, s_{2}\right) \\
\hline
\end{array}
$$

Now, let's obtain this for the specific geometry we have here

parent geometry

$$
x_{2}\left(s_{1} s_{2}\right)=0 \gg+2=2=
$$

simplify to gel

$$
x_{1}\left(\xi_{1}, \xi_{2}=\frac{1}{4}\left(3+3 s_{1}+f_{2}+s_{1} s_{2}\right)\right.
$$

(2) $x_{2}\left(\xi_{1} \sim r_{2}\right)=\frac{1}{4}\left(3+\xi_{1}+3 \xi_{2}+f_{1} r_{2}\right) \quad$ only for this geometry $_{1 i}^{8} 1_{10}^{2}$
bat we need $B \quad K^{e}=\int_{e} \widehat{B}^{T} D B d V$
relation between $B_{j} \rightarrow B$
or b begin wiah $\left[\begin{array}{c}\frac{\partial N^{i}}{\partial \xi_{1}} \\ \frac{\partial N^{i}}{\partial \varepsilon_{8}}\end{array}\right] \sim\left[\begin{array}{c}\frac{\partial N^{i}}{\partial K_{1}} \\ \frac{\partial N^{i}}{\partial x_{2}}\end{array}\right] \quad c=1, \ldots 4$

$$
\begin{aligned}
& \text { Coandhis }
\end{aligned}
$$

Let's do the opprsite

$$
\begin{aligned}
& \frac{\partial N^{i}}{\partial \xi_{1}}=\frac{\partial N^{i}}{\partial x_{1}} \frac{\partial x_{1}}{\partial s_{1}}+\frac{\partial N^{i}}{\partial x_{2}} \frac{\partial x_{2}}{\partial \xi_{1}} \\
& \frac{\partial N^{i}}{\partial \xi_{2}}=\frac{\partial N^{i}}{\partial x_{1}} \frac{\partial x_{1}}{\partial \xi_{2}}+\frac{\partial N^{i}}{\partial x_{2}} \frac{\partial x_{2}}{\partial \xi_{2}}
\end{aligned}
$$

repead this for $i=1, \ldots, 4$

$$
\begin{aligned}
& B=J^{-1} B_{s}
\end{aligned}
$$

parent geometry
 germexy

Challenge 2:
$\frac{d v_{\text {vive }}}{d v_{f_{v}, f_{2}}}=|\bar{\gamma}|$
notation for et J
for a valid change of cooridnate set $\gg 0$ at most $\begin{gathered}\text { evenywnert }\end{gathered}$

$$
\begin{aligned}
& K^{e}=\int_{f_{1}=-1}^{1} \int_{\rho_{2}=-1}^{1} B^{t} D \dot{N}|\sigma| d s_{1} d \rho_{c} \\
& e q(3) \quad B=J^{-1} B_{\xi} \\
& \alpha^{e}=\int_{-1}^{1}\left(J_{-1}^{-1} B_{g}\right)^{t} b e_{2 \times 2}\left(J^{-1} B_{s}\right)|J| d \delta_{1} d \xi_{2}
\end{aligned}
$$

$$
\begin{aligned}
& N=\left[N^{1} N^{2} N^{3} \quad N^{4}\right]=\left[\begin{array}{llll}
\frac{\left(1-\xi_{1}\right)\left(1-\xi_{2}\right)}{4} & \frac{\left(1 a \xi_{1}\right)\left(1-f_{2}\right)}{9} & \frac{\left(1+\xi_{1}\right)\left(1+r_{2}\right)}{4} & \frac{\left.1-s_{)}\right)\left(t \xi_{2}\right.}{4}
\end{array} \quad \text { quad } p=1\right. \\
& B_{\xi}=\nabla_{S, S_{2}} N=\left[\left.\begin{array}{l|l}
\frac{\partial N^{\prime}}{\partial s_{1}} & \frac{\partial n^{r}}{J \xi_{1}} \\
\frac{\partial N^{\prime}}{\partial \xi_{2}} & \frac{\partial a^{r}}{\partial \xi_{1}}
\end{array} \right\rvert\, \ldots\right] \\
& N^{2}=\frac{\left(1+\xi_{1}\right)\left(1-\xi_{c}\right)}{4} \rightarrow \frac{\partial N_{2}}{\partial \xi_{1}}=\frac{1-\delta_{2}}{4} \quad \frac{\partial N_{2}}{\partial \delta_{2}}=-\left(\frac{1+\delta_{1}}{4}\right)
\end{aligned}
$$

(4b) Central for any qual $p \geq 1$, vermal problem

For our particular element shape:

Referring to equation 2 real geometry

$$
x_{1}\left(\xi_{1}, s_{2} \left\lvert\,=\frac{1}{4}\left(3+3 \xi_{1}+s_{2}+s_{1} s_{2}\right)\right.\right.
$$

(2) $x_{2}\left(\xi_{1}<r_{2}\right)=\frac{1}{4}\left(3+\xi_{1}+3 \xi_{2}+\xi_{1} r_{2}\right)$ only for this

$$
\begin{aligned}
& \left\langle J^{-1} 2 \tau^{t}-1=\left[\begin{array}{ll}
\frac{\partial x_{1}}{\partial s_{1}} & \left(\frac{\partial x_{2}}{\partial s_{1}}\right. \\
\frac{\partial x_{1}}{\partial \xi_{2}} & \frac{\partial x_{7}}{\partial s_{2}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{3+\varepsilon_{2}}{4} & \frac{1+s_{2}}{4} \\
\frac{1+s_{1}}{4} & \frac{3+s_{1}}{4}
\end{array}\right]\right. \\
& |J|=\frac{\left(3+\xi_{2}\right)\left(3+\xi_{1}\right)}{16}-\frac{\left(1+r_{2}\right)\left(+r_{1}\right)}{1 z}=\frac{4+r_{1}+\xi_{2}}{8}
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{i j}=\frac{\partial x_{j}}{\partial \xi_{i}} \\
& \delta=\nabla_{x / s}^{t}
\end{aligned}
$$

$$
|J|=\frac{\left(3+s_{2}\right)\left(3_{4} s_{1}\right)}{16}-\frac{\left(1+r_{2}\right)\left(+r_{1}\right)}{18}=\frac{4+s_{1}+s_{2}}{8} \quad J=\nabla_{x / s}^{i} \quad{ }^{-1}
$$

(4b)
foll integrat order $\bar{F}=$ cenoland
"it ignores $\sigma^{-t} k J^{-1}|\tau|$ tem

$$
I_{11}=+\left(\frac{1-s_{3}}{4}\right)^{2}+\left(\frac{1-s_{1}}{4}\right)^{2} \quad \text { or der } 2 \text { in } s, \& s_{2}
$$

Geuss Guadradere

$$
\text { order in } s_{1}=2 \rightarrow 29 p_{r_{1}}^{\text {cal }}=\left(\frac{o_{1}+t}{2}\right)-\operatorname{cail}(1.5)=2
$$

$$
\begin{aligned}
& \frac{\xi_{1}=\frac{-1}{\sqrt{3}}}{\omega_{\pi} 1} \begin{array}{ll}
\varepsilon_{2}=\frac{1}{\sqrt{3}} \\
\omega_{2 \xi} 1
\end{array}
\end{aligned}
$$

porent

$$
\begin{aligned}
k^{e}= & I I\left(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)+1 I\left(+\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right)+I I\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)+ \\
& 1 \pm\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)
\end{aligned}
$$

NCs order $2 \rightarrow 3 \mathrm{NC}$ pomts Simpsents rde

