Course grade:

HW:

2 term projects:

- Commercial software 15%
- Your own code (trusses and frames) 17%

Final exam (take home)

Outline:

- 1. Mathematical background:
 - a. Weighted Residual Method (WRM)
 - b. Weak form
 - c. Discretization
 - d. Energy methods
 - e. Numerical examples
- 2. Different "1D" element types:
 - a. Bar
 - b. Beam
 - c. Truss
 - d. Frame
- 3. 2D/3D elements:
- a. Numerical integration (quadrature)
- 4. Code implementation (we'll only do it for 1D elements) -> Matlab, python, C++, ...

Background

40-45% more difficult more mathematical 2 " notations

$$G = \frac{F}{A} (1) \qquad \text{Stronic} \mathcal{E} \qquad \text{Shors} \qquad \frac{F}{E} = \frac{G}{E} (2) \qquad \text{Shors} \qquad \frac{G}{E} = \frac{G}{E} (2) \qquad \text{Shors} \qquad \frac{G}{E} = \frac{G}{E} (2) \qquad \text{Shors} \qquad \frac{G}{E} = \frac{G}{E} (2) \qquad \frac{G}{E} (2) \qquad \frac{G}{E} = \frac{G}{E} (2) \qquad \frac{G}{E} = \frac{G}{E} (2) \qquad \frac{G}{E} = \frac{G}{E} (2) \qquad \frac{G}{E$$

ME517 Page 3

 $\begin{bmatrix} F_1^{e_1} \\ F_2^{e_1} \end{bmatrix} = \begin{bmatrix} K \\ -1 \\ K \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix} \begin{bmatrix} V_1^{e_1} \\ V_2 \end{bmatrix} \begin{bmatrix} F_1^{e_2} \\ F_2^{e_2} \end{bmatrix} = \begin{bmatrix} K^2 \\ -1 \\ V_2 \end{bmatrix} \begin{bmatrix} V_1^{e_2} \\ V_2^{e_2} \end{bmatrix}$ F_{z} Frz fr fr ale'll that later R as follows F2 + F, 2 can de The assembly KI F: F: F: KTHKZ \bigcup = 2 Ki Ki $=(k_1+k_2)$ $U_1 = \frac{t_1}{V_1 + V_2} = \frac{1}{4 + 1}$ 5

 $\bigcup_{\lambda_{i}} z_{i} \in \mathcal{S}_{i}$ \geq 4+ KIttz

- The primary unknown (e.g. displacement, temperrature) are the same at that location
- Their "forces" (force,) add up

Engineering perspective

In the first part of the course we'll learn the mathematical perspective of WRS, FEM formulation that can solve even more general PDEs

Next time, we'll solve a truss and a 3D problem