FEM20240904

Wednesday, September 4, 2024 12:40 PM

2D/3D elastostatics Recall from last time

 $\forall 1$

 $-\sqrt{2ED}$

 $R(X) = 0$

Localization theorem

Localization theorem states that if the integral of a continuus function is zero for all subsets of D , then the function is zero:

$$
\forall \Omega \subset \mathcal{D} : \int_{\Omega} \mathbf{g}(\mathbf{x}) \, \mathrm{d}\mathbf{v} = \mathbf{0} \quad \Rightarrow \quad \forall x \in \mathcal{D} : g(\mathbf{x}) = 0 \tag{21}
$$

Let's assume $g(x_0) \neq 0$ (e.g., $g(x_0) > 0$). Since $g(x)$ is continuus, there is a neighborhood of x_0 ($N(x_0)$) that $g(x) > 0$. We choose an Ω that is only nonzero inside $N(\mathbf{x}_0)$. Then, $\int_{\Omega} g(\mathbf{x}) dV > 0$. Thus, $g(\mathbf{x}_0)$ cannot be nonzero and the function g is identically zero.

 $22/456$

Cant V2 Sands + Setave U $V.6 + Pb = 0$ $\begin{array}{c|c} V & V & V & V \\ \hline & -\nabla \cdot f_{x} & +\nabla = 0 \end{array}$ $\int_{\sinh x} \int_{\sinh x} \int_{\sinh x} \sinh x \, dx = \int_{\sinh x} \int_{\sinh x} \cosh x \, dx$ Heat conduction, $-\sqrt{9}9+Q=0$ T - temperature $\sum_{i=1}^{n}$ $-\nabla \cdot P_{x}$ 9 = head flux doming $+Y = 0$ a. heat savece Balance of averay energy flux through $\frac{1}{3}$ are differented \mathcal{L} $9.005 \rightarrow energy$ aust that goes 240 $\alpha\chi$ $\mathbb{Z}_{n^{(k)}}$ $n^{(k)}$ Most balance laws are in this form Outward ward a flux density fx: > O'it means the quanty (enroy) \cdot \hat{V} Sakceterm $ImasS_{\mu}$ tecresses $\overline{\mathbb{V}}$ $\int f_{\chi}$. nds $+ \int_{\Omega} r dV = 0$ $\begin{matrix} \updownarrow \downarrow \downarrow \downarrow \end{matrix}$ balance law harme theorem

$$
D_{N
$$

 x_2

 Ω

 dx_2

 dS

 $\sum_{n=1}^{\infty}$

Fun fact for you Transfer of boundary to interior integral higher dimensions

- \bullet Ω is compact and closed.
- \bullet $\partial\Omega$ is piecewise smooth.
- · Normal vector n is defined almost everywhere (a.e.) and is pointing outward.
- · tensor field (scalar, vector, matrix, ...):
	- $\mathbf{F}_{,i} = \partial \mathbf{F}/\partial x_i$ exists everywhere and
	- · is continuous.

$$
\int_{\partial\Omega} \mathbf{F} . n_i \, \mathrm{d}S = \int_{\Omega} F_{,i} \, \mathrm{d}V
$$

This is the generalization of the 1D version:

1.F(b) + (-1).F(a) = F(b) - F(a) =
$$
\int_{[a,b]} F'(x) dx
$$

$$
\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sqrt{2}}{\sqrt{2}} \sqrt{2}} \sqrt{\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\pi}{2}} \sqrt{\
$$

$$
39.2\sqrt{a}.\frac{1}{2}.\frac{1}{204}}\sqrt{30.2604}
$$

\n $1.25\sqrt{3.24}.\frac{1}{204}.\frac{1}{204}.\frac{1}{204}$
\n $50.2(9.15)$
\n $50.2(9.15)$
\n $50.2(9.15)$
\n 60.25
\n 1.25
\n 1.25

 $= F(b) - F(a)$

Balance law => Strong Form (PDE) Can we solve the PDE now?

> We need to "close" the system by adding more equations: - Constitutive equations - Compatibility equations

- …

 \bigwedge o

$$
\frac{df}{dx} = \frac{1}{dx} \frac{h}{dx} = \frac{d}{dx} \frac{dG}{dx} = \
$$

$$
\begin{bmatrix}\n\frac{6}{9} & \frac{6}{9}x \\
\frac{6}{9} & \frac{6}{9}x\n\end{bmatrix} + \frac{1}{9} \begin{bmatrix}\n\frac{6}{9} & \frac{6}{9}x \\
\frac{6}{9} & \frac{6}{9}x\n\end{bmatrix} + \frac{1}{9} \begin{bmatrix}\n\frac{6}{9} & \frac{6}{9}x \\
\frac{6}{9} & \frac{6}{9}x\n\end{bmatrix} + \frac{1}{9} \begin{bmatrix}\n\frac{6}{9} & \frac{6}{9}x \\
\frac{6}{9} & \frac{6}{9}x\n\end{bmatrix} + \frac{1}{9} \begin{bmatrix}\n\frac{6}{9} & \frac{6}{9}x \\
\frac{6}{9} & \frac{6}{9}x\n\end{bmatrix} = \frac{2}{9} \begin{bmatrix}\n\frac{6}{9} & \frac{6}{9}x \\
\frac{6}{9} & \frac{6}{9}x\n\end{bmatrix} + \frac{1}{9} \begin{bmatrix}\n\frac{6}{9}x \\
\frac{6}{9}x\n\end{bmatrix} + \frac{1}{9} \begin{bmatrix}\n\frac{6}{9}x \\
\frac{6}{9}x\n\end{bmatrix} = \frac{1}{9} \begin{bmatrix}\n\frac{6}{9}x \\
\frac{6}{9}x\n\end{bmatrix} + \frac{1}{9} \
$$

End of side note

$$
7.8+802
$$
 eq1 $\int_{eq7}^{6}11,1 +312,2+85,2$

$$
G = \begin{pmatrix} 1 & \frac{1}{2}a & \frac{1}{2}a\\ \frac{1}{2}a & \frac{1}{2}a & \frac{1}{2}a\\ \
$$

We are still 1 equation behind

Compatibility equation

$$
\frac{1}{\frac{1}{1-\frac
$$

Sample Boundary value problems: Euler Bernoulli beam

where

- $\cal M$ $=$ Momentum
- \boldsymbol{V} $=$ Shear force
- $=$ Distributed load \boldsymbol{q}
- $\cal E$ $=$ Elastic modulus
- $=$ Second moment of area \boldsymbol{I}
- $=$ Curvature κ
- $=$ Vertical displacement \boldsymbol{y}

 $32/456$

Euler Bernoulli beam: BCs

- \bullet One and only one of the pair M (Neumann) and θ (Dirichlet) is enforced at each end of the beam.
- \bullet One and only one of the pair V (Neumann) and y (Dirichlet) is enforced at each end of the beam.
- \bullet Neumann boundary conditions correspond to the flux terms $(M \text{ and } V)$.
- Neumann boundary conditions fall in the upper half of derivatives $([m, 2m-1] = [2, 3]).$
- Dirichlet boundary conditions fall in the lower half of derivatives $([0, m 1] = [0, 1]).$
- There are two boundary conditions at each end point (equal to $m = M/2$).
- $M_u + M_f = M 1.$

 $33/456$

And slide 34

Read before the class last time