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Energy Method for Solid Mechanics

The total energy in solid mechanics is,

II=(V—-W)—-T =Total energy  (85a)

T =[ lpv.v dv = Kinetic energy (85b)
D2

. i natural boundary
e(e) = internal energy density H e

V= [ G(E) dv = Internal energy (85(’) %,pv.v = kinetic energy density E)’D;
D -

Wi = [puphdy ~at
W =Wy, + Wy = External work (85d) bxternal work from body force,” Wy = [ u.§ds
external work otf natural boundary

W, = / w.gb dv (85e) D

P 9D u specified

- TLy, essential boundary .

nff — / u.t ds {35” C eSSentia undary T >

Dy

@ For static problems T = 0.
@ |Internal energy density, e(e) = %e ro(€) = % ijki€ij€kl for linear solid.
@ Natural boundary forces are naturally incorporated into the energy (Wy).

@ Essential boundary conditions are incorporated into function space:

ueV={v|veCYD): ¥x € 9D, v(x) = i1(x)}, is a solution if
Va eV, I(u)<M(q). (86)
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Energy Method for 1D solid bar (statics)

JaD,, dx
q f Natural boundary

Essential boundary

u=1u - (mf

= 0 statics ] T (87a)
L=> L — L N\ 2
1 1 1 du
V= - = - = = —
7 /0 seodv [) 2(Ee) (4dz) ﬁ SEA (dx) dz (87b)
L
W= [ () dz (87¢)
0
Wy = u(L)F (87d)
where A is the cross section area and g(x) is distributed load. Thus the total energy is,
La du\? L _
II(u) = —-FEA (—) dz —f u(z)g(z) dr — u(L)F (88)
0 2 dx 0 . . ‘

Since 9D, = {0} with the essential boundary condition u(0) = i, the energy statement is,
Find u € V = {v |v e C(D) : v(0) = @}, such that

Vi eV, II(u)< (i) (89)
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Example: 1D solid bar

Based on the condition 617 = 0, u the solution from the energy method is, &¢

Find u € V = {v € C*([0,L]) | v(0) = ii}, such that,

» —
Yéue W = {v € C'([0,L]) | v(0) = 0} PD[E / (X/
: L )
o1 :/ VEAu/(z) dz —/ du(z)q(z) dx — Su(L)F =0 (%8) S/
0 0

@ What would be the weak form for this problem based on the balance law/Differential

Equation approach (cf. (73))? W\Q/\lb)‘(&

FindueV={ve C"([l).L]) | »(0) = @}, such that, \/\/RS
YweW={ve ('l([l) L)) | »(0) = 0}
; )
81 = / r)EAY/ (z) dz —/ o(2)g(z)dz — w(L)F =0 (99)
0
@ What are the differences between this weak statement and the optimality condition

obtained from energy method? \/\} \_‘ w
81/ 456 _ga/k/ Qon

Is there any easier way to calculate the first and second increments, like taking derivatives?
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Calculating functional increments is very similar (7\

L @*
M Qk i g (L ERW %WX ~a(lf é\ ¢

e<3 o Sy aMr

TS / D %EAU&/Z ( v

¢ T lup %&%%j/ %uﬁﬁh Eé\é
<§E§%w _+\%}§f%&\ N

}%ﬁ@\ WAE - Y L\\Wu

v,

ST = S}M} i _ &0\ Cudn — Su() €

Doty W\ vahdW ST belons

Ty -7 %Tﬁ%/ PRe

<G Mo S W EASKy ~ &%w\?&\ su(LYf
« "\
ST SO%E“\é*

| NS L
AR N\ ( \ 'V\ (%\.qjx

< A Ly AV R



M%\M L,\J

B —

T < u\wk W - o) F

g L
A _
}551% U g<u/\ AY\ _SB%L% %\/\Xx_, Su(&?

/H\v\ b~ qou e ~Su0F
A S\M

= ACq N

Example: Euler Bernoulli beam .

dx

JaD,

We determined the internal energy of the beam to be (cf. (85c¢)),

i L {73 Lyrri1,d%
V= / —eo dv :/ (/ —f‘EtlA) dz :/ (/ —(—{::)‘E«i.—l) dx
JD 2 0 A 2 0 A 2 11}“'
L 1 l’.’ 2 2
= / —E(#)'(/ 2*dA)dz =
JO 2 ll.l“‘ A
I

L1 12y 4
v :/ _ENSY)? da (100)
0o 2 dz?
The external works are: ég
L —
Wy, = v(z)h(z) dr (101a)

. = = = 1 -
W, =y(L)(-V)+ ‘:—”(1.),\1 = —y(L)V + ‘ll(l.).\l (101b)
dxr dr
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Other approach:

Balance law -> Strong form (DEs)

Des -> WRS

Weighted residual statement to Weak statement

To demonstrate the process of deriving the weak statement from the weighted residual statement
consider the following problem

ap,, e R
Essential boundary l> Natural boundary
Szy=0 A ———ty o
The residuals for this problem are
R; = ‘1Q (EI —"}) q Interior residual for = [0,L]
SRy = “—I N ‘\.1 Natural BC residual for 9Dy = {L} (53)
Ru = g:f: ] Essential BC residual for

oD, = {0}
As mentioned previously, we want to drop the weighted residual term for essential boundary
condition (why?). ingly,

Accordingly, we need to strongly enforce the essential boundary condition
(This is why this is called “essential” boundary condition). That is, we require
-6
Ru - [

g_y]zf) at z =0 (9Dy). (54)
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Weighted residual statement to Weak statement
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Weighted residual statement to Weak statement

M
Natural boundary

\
7 Dy

Since we strongly enforce the essential boundary condition, the weighted residual for this problem
simplifies to:

0 = [HwRi(y) dt,+fav wiRs(y)ds
= J3 v (i (B154) - 9) “+[—TJ [M M]h4 (55)
= i w (i (EIEY) - a) de— S20T = M@)lamr +w(V = V(©))le=t

\lext, we transfer derivatives from y to w (trial function to weight function). We note that

Gt o) - [ edmi (@) oo b (rE

=k [F I54] dr+ wvullzzh - [$2 (EI5H)

=0
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Weighted residual statement to Weak statement

oD, 1 B
Essential boundary Natural boundary
b=y =80 «'\ dDy

y=19 v,

Plugging (55) in (56) yields,

0 = Jiw (i (EIEH) - q) do— 4201 = M@)lamr + w(V = V(©))lemt
_{ o [So#EISY - wa] do+ [wV ()] - $2M@)] 525
& (M — M())le=t, + w(V = V(1))lz=t
o’* [s’diz,EIE; wq] dz
+{wV(y) - ""’M@) (M - M) +w(V -V@)}
wV(y) - M)}

(57)
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Weighted residual statement to Weak statement

This equation simplifies to
ap, Essential boundary

Lrd2w _ d2y dw - - 0=y =0 y=y%
— —_— s s S} Vv
0 /(; [ EId:z:? wq d_'t+{ d:':M+w } E (58a)

i e M
+{w 0w -ve) - 2 06 - M6 | (58b) ' >
dr z=L l
- {qu(y) L gEM(y)} (58¢) v
dz z=0 Natural boundary oDy

Noting that M (y) = EI% and V(y) = ad; (EIg;%) (second and third order derivatives in x):

@ What is the maximum derivative order for ¥ in the interior of the beam (58a)? 2.
@ What is the maximum derivative order for w in the interior of the beam (58a)7 2.
@ Are the remaining terms at x = L (natural boundary) identically zero (58b)? Yes.
@ What is the maximum derivative order for y at = = 0 (Essential boundary) (58¢)? 3.
@ What is the maximum derivative order for w at = 0 (Essential boundary) (58¢)? 1.

Summary

For the differential equation of order M = 4 (m = 2) we have been able to equally distribute
differential orders between trial function (v) and weight function (w) (order = m = 2). The
only term that violates this is the essential boundary where y has higher order derivative. We fix
this problem by requiring w and %% to be identically zero at = = 0.
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Essential boundary condition

We mentioned that the essential boundary condition is strongly enforced (That is, it is an “es-
sential” condition). The essential conditions (54) require,

&:[g:g]:o: {g:rl:_é },atx:O(B’Du) (59)

ap Essential boundary
u -
z <o : E : 0=y =0 =
We discussed that to annihilate the high order derivatives of ¥ in v =y

(58c):

dw 1
- {wV(y) - ﬁM(y)} B

we set the corresponding weight functions identically zero: Naturs) boundary D,

{ %1:00 } at z =0 (8Dy) (60)

Summary

@ Trial, y, (solution) functions exactly satisfy all essential boundary conditions.
@ Weight, w, functions exactly satisfy the homogeneous essential boundary conditions.

© [f both conditions are satisfied we can form a weak statement that requires only half the
highest derivative order. In fact, this enlarged space of functions is the same as the space
of the original balance law.
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Weak Statement (WS)

oD, q M
Essential boundary l> Natural be

0=y =86 { == }D,
y=y

The weak statement for the Euler Bernoulli problem and the BCs in the figure are:

du

Findy € V = {u € C*(D) | u(0) =, -(0) =6}, such that, (62a)

ar
. d

VweW:{uEC"(D) | u(0) =0, d_“(o):“} (62b)

xT
L rd2w 2 dw - -
0 =/ ey S TR . (62¢)
o Ldz? dz? dr z=L

N QM\ ,
b, = U J(%d ' M
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