Bar example, n=2, Collocation method

• Equations (216) and (217) yield,

$$\mathbf{K} = \begin{bmatrix} 0 & 2 \\ -1 & -4 \end{bmatrix}, \quad \mathbf{F} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \tag{218}$$

• From Ka = F (125) and (218) we get,

$$\mathbf{a} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \tag{219}$$

• From $u^h = a_j \phi_j + \phi_p$ (117a), $[\phi] = \{x, x^2\}$ (cf. (196b)), and $\phi_p = 1$ (182) we have

$$u_{C2}^{h} = 1 + x (220)$$

Collocation method versus Finite Difference

- Both Collocation and Finite Difference methods directly work with the strong form and boundary conditions.
- Collocation method is a particular class of weighted residual method where the solution is interpolated as $\mathbf{u}^h = a_j \phi_j + \phi_p$.
- Finite Difference does not interpolate the solution with trial function. Rather, it uses discrete values of the function on often regular grids to approximate differential operators.
- Differential operators in Finite Difference method are approximate, where as in collocation method the solution \mathbf{u}^h exactly satisfies the strong form at \mathbf{x}_i .
- ullet As an example, let us assume the differential operator L_M in \mathcal{R}_i includes a Laplacian operator $\Delta u=rac{\partial^2 u}{\partial x_1^2}+rac{\partial^2 u}{\partial x_2^2}$. The finite difference approximation of Laplacian on a uniform grid with size h would be,

$$\Delta u(\mathbf{x}_2) = \frac{1}{h^2} \left(u(\mathbf{x}_1) + u(\mathbf{x}_3) + u(\mathbf{x}_4) + u(\mathbf{x}_5) - 4u(\mathbf{x}_2) \right)$$
(150)

120 / 456

Finite Difference Stencils

	Differentiation	Finite difference approximation	Molecules
		0.000 380	+ * * 4
	dw/dx	$\frac{w_{i+1}-w_{i-1}}{2h}$	① • ①
			}
	$\frac{d^2w}{dx^2}$	$\frac{w_{i+1}-2w_{i}+w_{i-1}}{h^{2}}$	0-0-0
	$\frac{d^3w}{dx^3}$	$\frac{w_{i+2}-2w_{i+1}+2w_{i-1}-w_{i-2}}{2\hbar^2}$	0-0-0-0
^	$\frac{d^4w}{dx^4}$	$\frac{w_{j+2}-4w_{j+1}+6w_j-4w_{j-1}+w_{j+2}}{\hbar^4}$	0-0-0-0
VW.	$\nabla^i w _{i,j}$	$\frac{-4w_{i,j}+w_{i+1,j}+w_{i,j+1}+w_{i-1,j}+w_{i,j-1}}{h^2}$	0
Tw.	∇°w _U	$ \begin{split} \{20w_{i,j} - 8(w_{i+1,j} + w_{i^{j-1},j} \\ + w_{i,j+1} + w_{i,j-1}\} + 2(w_{i+1,j+1} \\ + w_{i-1,j+1} + w_{i-1,j-1} + w_{i+1,j-1}) \\ + w_{i+2,j} + w_{i-2,j} + w_{i,j-2} \\ w_{i,j-2}/\hbar^2 \end{split} $	0 0 0 0 0 0 0 0 0

Source: Bathe's book, section 3.3.5.

121 / 456

How do we use Finite Difference (FD) for our 1D problem

N = 2

whomas are $\{u_1, u_2\}$ $\{x_1, x_2\}$ $\{x_1, x_2\}$ $\{x_1, x_2\}$ $\{x_1, x_2\}$ $\{x_2, x_3\}$ $\{x_1, x_2\}$

Bar example, n=2, Comparison of solutions

178 / 456

Similarities of FD and collocation:

- They satisfy the equations at the nodes (interior residual at interior nodes, natural BC residual at natural boundary nodes)
- They don't involve any integrations.
- They are fast (especially the FD).
- Both are not that accurate ...

What's the difference?

Collocation Uni= Ap(x) + a, dx (x) + a, dx (x)

eghan 1 + a, x + a, x² notal values) we only (eh(x)) N. Uz + Ue - Zui hi not exact (Unlike Collectal)

h > 0 god (Y, ()" mathemally is o But (bad) we deal with cancelation error due to finite precision calculation,

Bar example, n = 3, Comparison of solutions

198 / 456

Bar example, n=4, Comparison of solutions

201 / 456

Galerkin method

From lost week

Lessi square)

$$K = \begin{cases} 2 \left[x \right] \left[0 \right] dx - \left[x^{2} \right] \left[1 \right] dx \\ = \begin{cases} 2 \left[x^{2} \right] \left[0 \right] dx - \left[x^{2} \right] \left[1 \right] dx \\ = \begin{cases} 2 \left[x^{2} \right] \left[0 \right] dx - \left[x^{2} \right] dx - \left[x^{2} \right] dx \\ = \begin{cases} 2 \left[x^{2} \right] \left[0 \right] dx - \left[x^{2} \right] dx - \left[$$

$$F = \int_{0}^{\infty} \left(\frac{x^{2}}{x^{2}} \right) dx - \left(\frac{$$

$$K = \begin{bmatrix} -2 & -4 \\ -4 & -37 \end{bmatrix} F = \begin{bmatrix} -7/3 \\ -25/6 \end{bmatrix} , \quad Ka = F \Rightarrow a = \begin{bmatrix} 37/24 \\ -3/16 \end{bmatrix}$$

$$K = \begin{bmatrix} 4 & -37 \\ -3/16 \end{bmatrix} + 4 = 1 + \frac{37}{24} \times -\frac{3}{16} \times 2$$
Galarkan has a factor of the state of t

Bar example, n=2, Comparison of solutions

178 / 456

Gatorkii mothod using the weak statement

Grapokin method using the weak statement

Late Au'k = (ag dx + W(L)) = (WK)

W = (ar)

W = (ar)

U = (Pr) (ar)

Plug them $\int \left[\frac{\omega_1}{\omega_2} \right] = \left[\frac{\alpha_1}{\alpha_2} + \frac{\alpha_2}{\alpha_2} \right] + \left[\frac{\alpha_1}{\alpha_2} \right] + \left[\frac{\alpha_1$ Ka=Fr+h-to K = CL (a) EA (d) Jax , Fr = (a) (b) F Source ferm (L[Wi]EADPAX $V = + \sum_{i} v_{i} + v_{i}$ O(1) in the mag. E.Br. O(1) is one suitable O(1) in the mag. E.Br. O(1) is one suitable O(1) in the mag. E.Br.

$$Ka = F_{0} + F_{0} - F_{0}$$

$$K \cdot \int_{0}^{\infty} \int$$

Ritz method:

method

The idea is that here we

- 1. Discretize the solution
- 2. Minimize the energy

As expected, it matches the solution from WRS for Galerkin

 $a = k + \frac{32}{5}$ $a = k + \frac{32}{5}$