Bar example, $n = 2$, Collocation method

 \bullet Equations (216) and (217) yield,

$$
\mathbf{K} = \begin{bmatrix} 0 & 2 \\ -1 & -4 \end{bmatrix}, \quad \mathbf{F} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}
$$
 (218)

• From $Ka = F(125)$ and (218) we get,

$$
\mathbf{a} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \tag{219}
$$

• From $u^h = a_j \phi_j + \phi_p$ (117a), $[\phi] = \{x, x^2\}$ (cf. (196b)), and $\phi_p = 1$ (182) we have

$$
u_{C2}^h = 1 + x \tag{220}
$$

Collocation method versus Finite Difference

- ^O Both Collocation and Finite Difference methods directly work with the strong form and boundary conditions.
- Collocation method is a particular class of weighted residual method where the solution is interpolated as $u^h = a_j \phi_j + \phi_p$.
- Finite Difference does not interpolate the solution with trial function. Rather, it uses discrete values of the function on often regular grids to approximate differential operators.
- Differential operators in Finite Difference method are approximate, where as in collocation method the solution u^h exactly satisfies the strong form at x_i .
- \bullet As an example, let us assume the differential operator L_M in \mathcal{R}_i includes a Laplacian operator $\Delta u = \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2}$. The finite difference approximation of Laplacian on a uniform grid with size h would be,

$$
\Delta u(\mathbf{x}_2) = \frac{1}{h^2} \left(u(\mathbf{x}_1) + u(\mathbf{x}_3) + u(\mathbf{x}_4) + u(\mathbf{x}_5) - 4u(\mathbf{x}_2) \right) \tag{150}
$$

 $120/456$

121/456

Finite Difference Stencils

Source: Bathe's book, section 3.3.5.

How do we use Finite Difference (FD) for our 1D problem

 N_{c}

unknauns are $\{u, v\}$
 \downarrow \downarrow \downarrow \downarrow

 $9(x)=2-x$ $(12x)$ $|z|$ FF_{2} $h₂$ $n-4$ \mathcal{W}

 $h_5 l_7$

ME517 Page 2

 02×2

Bar example, $n = 2$, Comparison of solutions

Similarities of FD and collocation:

- They satisfy the equations at the nodes (interior residual at interior nodes, natural BC residual at natural boundary nodes)
- They don't involve any integrations.
- They are fast (especially the FD).
- Both are not that accurate …

What's the difference?

V GC nodal values $\int dx$ only hare $\overline{\mathcal{O}}$ $U_{\mathcal{Z}}$ $u^2(x)$ as $u^2 + u_0 - 2u$

where $\frac{u}{\sqrt{2}} + u_0 - 2u$

$$
h \rightarrow 0
$$
 $g \cdot d$ $(\frac{1}{2} \cdot 1)$ *matching* $\rightarrow 0$
\n $B \cup +$ (bad) *we deal with cardad*
\n*envo due to finite precsic calabis*.

Bar example, $n = 3$, Comparison of solutions

 $198/456$

Bar example, $n = 4$, Comparison of solutions

Galerkin method 4) Spectral Crabelkini
Versis Sunction {x, x, x, x, x, x, $MRS.$ $\int_{a}^{2} \omega R_i dx + \omega Rf$ = ω (for all other than Least square) From lost week

ME517 Page 6

Bar example, $n = 2$, Comparison of solutions

the weak statement Graperkin method using

 \mathcal{Q}

ME517 Page 7

Gatakii mathod using the weak statement

C C EA U IX = \int C g d + + C U C F (a) $\frac{a}{a}$ P also them $\int_{0}^{L} \left[\frac{\omega_{1}}{\omega_{2}}\right]' E A(F P_{1} \Phi_{2})' \begin{bmatrix} q_{1} \\ q_{2} \end{bmatrix} + \Phi_{P}^{2} \right) \cdot \int_{0}^{L} \omega_{2} \left[q_{1} \left(x + \left[\frac{\omega_{1}(L)}{\omega_{2}(L)}\right) F \right]$ $Ka=F_{F}+\sqrt{1}-F_{D}$ $K = \int_{0}^{L} \left[\omega_{L}^{(1)} \right] E A \left[\varphi_{L}^{(1)} \varphi_{L}^{(1)} \varphi_{L}^{(1)} \right] \times J \left[- \int_{0}^{L} \omega_{L}^{(2)} \right] q dx \quad \text{for} \quad \omega_{L}^{(2)} = \omega_{L}^{(1)} \left[\frac{\omega_{L}^{(1)}}{\omega_{L}^{(2)}} \right] \text{ for } L \leq \omega_{L}^{(2)} \left[\frac{\omega_{L}^{(1)}}{\omega_{L}^{(2)}} \right] \text{ for } L \leq \omega_{L}^{(1)} \left[\frac{\omega_{L}^{($ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ RC $F_{D^z} \qquad \int_{-\infty}^{\infty} [w'_x] e A \phi'_p dx$ $\frac{1}{2}$ by $\frac{1}{2}$ $u = \frac{1}{\sqrt{2}} + \sum_{i} a_{i} \cdot \phi_{i}$
 ϕ_{i} = $\frac{1}{\sqrt{2}} + \sum_{i} a_{i} \cdot \phi_{i}$
 ϕ_{i} = $\frac{1}{\sqrt{2}} + \sum_{i} a_{i} \cdot \phi_{i}$
 ϕ_{i} = $\frac{1}{\sqrt{2}} + \sum_{i} a_{i} \cdot \phi_{i}$
 ϕ_{i} = $\frac{1}{\sqrt{2}} + \sum_{i} a_{i} \cdot \phi_{i}$
 ϕ_{i} = $\frac{1}{\sqrt{2}} + \sum$ Sodeshir E. BC his statement [W. homos E. BC
(Wi(O)=O here)

Galerkin method can also be used in the weak statement (in

As expected, it matches the solution from WRS for Galerkin method

Ritz method: The idea is that here we 1. Discretize the solution

2. Minimize the energy

 $1/(u) - W(u)$ 701

 \int_{-1}^{2} $\sqrt{2}$

ME517 Page 9

$$
\pi(a) = \sqrt{(a) - \frac{1}{2} \left(\frac{1}{2} \epsilon A u^{2} dx - \frac{
$$

$$
\pi_{1}(\alpha_{1},\alpha_{2}) = (a_{1}^{2}+4a_{1}a_{2}+\frac{16}{3}a_{2}^{2})-(\frac{1}{3}a_{1}+\frac{25}{6}a_{2}+2)
$$

We want to minimize the energy
\n
$$
\sqrt{1}
$$

\n $\frac{1}{2}$
\n

$$
max_{\begin{matrix}1\\ 3\frac{7}{21} \\ -3\frac{7}{21} \\ -3\frac{7}{21} \\ -3\frac{7}{21} \\ -\frac{3}{21} \\ \end{matrix}}\begin{matrix}k\\ 2\\ 3\frac{7}{2} \\ -\frac{37}{24} \\ -\frac{37}{24} \\ -\frac{3}{16} \\ \end{matrix}
$$