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- We already have a discretization error in FEM e/ - C @

Q%QMUQ O(M P(mx
~s L—>0

- Any other approximation that we make along the way
whose corresponding error is of the same order or smaller

~
than discretization error is perfectly fine. Q\é{\ —_ ﬂ()(\

Global shape functions to elément shape functions

N X
@ Finite Elements are the domain subdivisipns that afe used for the construction of the
shape functions

@ Restriction of (global) shape functions to elements form the elements’ shape functions
(local).

@ To distinguish element level and global level quantities, any element level value is
decorated by (.)°.

@ Local node numbers in the element start from 1 to number of nodes in element nf, and
are denoted by nf,..., ne
@ Similarly local dof start from 1 to the number of dof in element n§ ..

@ For example in the figure both n{ and nj  are both 2 and the range for local node
number and dof is from 1 to 2.

@ Element shape functions satisfy the condition,

N{(n5) =65 (325)
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number and dof is from 1 to 2. RSyTmE————
@ Element shape functions satisfy the condition,
N{(n5) =65 (325)

@ More generally (e.g., beam elements), shape function i has a value 1 at dof i while has a
value zero at all other element dofs.

65 /456

Element shape functions to global shape functions

! a /
@ While the global view of finite element has some advantages in mathematical analysis, we
often form the shape functions at the local level and if needed form global shape functions.

@ It was this local perspective that first was employed in engineering finite element analysis.

@ For example, in the figure the 1D bar element has three nodes with one being internal
node and has interpolation order p = 2.

@ We observe that,
Ni(n§) =465 = Ni(ny) =41y
which was the condition we first stipulated for finite elements in global view.

@ As an example, we observe that the global shape function N,(z) is formed from local
element shape functions.

@ Notice that while local element order is p = 2 the global shape functions are still C'°
(piece-wise quadratic in this case).

@ Elements can have internal nodes. This generally occurs for higher than linear elements
(p>1).
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Element shape functions to global shape functions

——

] “ ]

@ While the global view of finite element has some advantages in mathematical analysis, we

often form the shape functions at the local level and if needed form global shape functions.
@ |t was this local perspective that first was employed in engineering finite element analysis.
@ For example, in the figure the 1D bar element has three nodes with one being internal

node and has interpolation order p = 2.
@ We observe that,

Ni(n§) =465 = Ni(ng) =41y
which was the condition we first stipulated for finite el its in global view.

@ As an example, we observe that the global shape function N,(z) is formed from local
element shape functions.

@ Notice that while local element order is p = 2 the global shape functions are still C°
(piece-wise quadratic in this case).

@ Elements can have internal nodes. This generally occurs for higher than linear elements
(p>1).
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Calculate the element stiffness matrix when E and A are not constant

Local coordinate system
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1. : 1. o
@ Finally, we plug (371) and (372) into (366) to obtain, /}
(373)

e __ 1 ! -1
k=57 [ B©a© el

@ If A and E are constant along the bar, we have:

k€ = i_f [_11 _11] (constant A and E) (374)
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