

ME517 Page 1

Basically, once we get the nodal forces, we can calculate the support forces:

 $\overline{\overline{z}}$

ME517 Page 5

Beam Example: FEM vs. Exact solution: y

 \bullet Similar to bar element FEM and exact solutions match at nodes.

• This behavior is restricted to certain problems in 1D with constant material properties along the element and does not extend to more general cases.

 $\begin{array}{|c|c|c|c|c|}\n\hline\n\hline\n\hline\n0 & 00:41:14 &\times\n\end{array}$ **E** Stop sh

 $376/456$

Beam Example: FEM vs. Exact solution: θ

- Rotations at nodes (rotational dofs) match those from exact solution.
- Again we emphasize that while this behavior is shared for certain types of 1D problems, it does not extend to more general cases.

- compared to exact solution.
- This is a general behavior where FEM accuracy decreases for solution derivatives.

378 / 456

 $377/456$

Frame

$$
\underbrace{\hspace{2.5cm}}^{\hspace{2.5cm}\text{mod}}
$$

- Axial deformation (in local coord.)
	- $\frac{EA}{L}\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}\begin{Bmatrix} \overline{u}_1 \\ \overline{u}_2 \end{Bmatrix} = \begin{Bmatrix} f_{\overline{x}1} \\ f_{\overline{x}2} \end{Bmatrix}$

3D frame element: local system

A 3D 12-freedom beam element defined in a local system

source: B. Torstenfelt; http://www.solid.iei.liu.se/Education/TMHL02/Book-Bars%20and%20Beams.pdf · 12 local dofs are:

 $\mathbf{a}^{e\mathrm{T}}=\{u_{1}^{e}\;v_{1}^{e}\;w_{1}^{e}\;\theta_{x1}^{e}\;\theta_{y1}^{e}\;\theta_{z1}^{e}\;u_{2}^{e}\;v_{2}^{e}\;w_{2}^{e}\;\theta_{x2}^{e}\;\theta_{y2}^{e}\;\theta_{z2}^{e}\}$ (445)

• They correspond to axial and bending displacements, and torsional and bending rotations:

3D frame element: local system stiffness matrix

 \bigodot EI_y and EI_z contributes to bending vertical displacement and rotations.
 \bigodot GK contributes to axial (torsional) rotation. G is the torsional modulus and K is torsional proportional constant for the cross section.

 \bullet *GK* contributes to axial (torsional) rotation. *G* is the torsional modulus and *K* is torsional proportional constant for the cross section.

Shapes double get Arac () Coding the FEM method C lass herovery pély olon Cirde
JR $dh\nu_{5}$ elad γ' A ator いしん λ $\overline{\mathcal{L}}$

- stiffness matrix (ke: k^e): $n_f^e \times n_f^e$ local stiffness (conductivity, *etc.*) matrix.
- force vectors (fde, foe, fee: f_D^e, f_o^e, f_e^e): A variety of element n_f^e load vectors such as essential BC (f_D^e), sum of other forces ($f_o^e = f_r^e + f_N^e + \cdots$, *etc.*), and element total $f_e^e = f_o^e - f_D^e$.
- \bullet {physics}: Physics represented by the element; e.g., for e_1 physics are solid and thermal.
- eType: one or more than one object that identify the element type. Examples are ۵ shape and order of element (linear triangle, etc.).

393 / 456

class PhyElement

 H_{max}

&
L

 $\mathcal{S}_{\mathcal{S}}$

ral

