FEM20241118

Monday, November 18, 2024 12:48 PM

From last time,

Functions of the Element class

CalculateElementStiffness

proce dival

 $Huss$ k^{e} : NE $\frac{k}{k}$ $\frac{k}{k}$ $\frac{k}{k}$ $\bar{\chi}$ \setminus $(e^{\sqrt{p}})$
($e^{\sqrt{p}}$)
($e^{\sqrt{p}}$) $\int\!\!\!\!\!\!\int\,$ 0^{8}

 $bor \quad k^2 = 4E \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$

Parent (Element class)

id Calculate_ElementStiffness_Force() = 0;

Parent does not have the implementation

class PhyElementBar : public PhyElement

{

void PhyElementBar::Calculate_ElementStiffness_Force() // compute stiffness matrix: %/compute stirtness matrix:
 $k = 2$ and $k = 2$ and $k = 1$
 $k = 6$ and $k = 6$ and $k = 1$
 $k = 6$ and $k = 1$
 $k = 1$

 $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$

 \leq orbal \leq

In contrast to this virtual function (each subclass can have its own implementation) we have normal functions.

Example: Assembly

Independent of the element -> can be implemented at the element level.

At the element element, we have an implementation:
 $\begin{array}{|l|} \hline \end{array}$ // Step 11: Assembly from local to global system
 $\begin{array}{|l|} \hline \end{array}$ void AssembleStiffnessForce(MATRIX& globalK, VECTOR& globalF);

FEM Solver Objects: 4. Node: Data

 \bullet id: Clearly, id of n_1 is 1.

 \bullet coordinate: e.g., for n_1 the coordinate in the figure can be:

 $crd_{XY}(n_1) = \begin{bmatrix} 0 & 0 \end{bmatrix}$

coordinate components are alway represented with respect to a coordinate system (another geometry object we will not further discuss herein).

- \bullet {ndof}: i.e., a "set" of dofs. Dof is a class being described next. It includes data such as being free or prescribed, position in global free or prescribed dofs, value (e.g., displacement), and force.
- **O** nndof: Number of dof for the given node.

We will not discuss functions for the node object.

class PhyNode // In ract, we can even accurate and successive the class
// remember friendship is only given inside the class
friend ostream& operator<<(ostream& out, PhyNode& node); friend ostream& operator<< (ostream& out, PhyNode& node); $public:$ void set_nndof(int nndofIn); void UpdateNodePrescribedDofForces(VECTOR& Fp); ID $id;$ VECTOR coordinate; vector <Phypof> ndof; int nndof; // number of dofs

 c out d

397 / 456

 $\overline{}$

0

 $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$
 $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ λ

 $399/456$

FEM Solver Objects: 5. Dof

Examples of dof for the structure shown are: dof f field index \boldsymbol{p} pos \vee 1 of n_1 true $\bar{1}$ \bar{T} unknown $\cal T$ \overline{a} U $\overline{2}$ 3 of n_1 false $\mathbf{1}$ unknown $\overline{0}$ fre da \overline{M} - (a vector in 3D) 3 of n_5 talse 10 unknown θ $\bar{7}$ $\mathbf U$ \overline{a} 2 of n_6 true \bar{y} unknown

Solution steps

The steps for FEM solution are:

- Set Element nodal dofs.
- Set global dofs using element dofs.
- \bullet Compute n_f from n_{dof} and n_p and resize and zero stiffness matrix and force vector.
- Set global prescribed dofs.
- Set global free dofs.
- \bullet Set dof (free + prescribed) positions.
- Set $F(F_f)$.
- Set element dof maps M_t^e .
- Set element (prescribed) dofs.
- © Compute element stiffness matrix and force vectors.
- Assemble element stiffnesses and forces to global system.
- Solve for (free) dofs a from $Ka = F$.
- 3 Assign a to nodes and elements.
- \bullet Compute prescribed dof forces: \mathbf{F}_p (if needed).
- 6 Compute (if needed) output nodes and elements.

- FEM implementation become considerably simpler for problems where all elements are of the same type (regardless of number of physics per element).
- In this case, we define:

$$
n_{\text{dpn}} := \text{Number of dof. per node denoted by } \underline{\text{ndofpn}} \tag{448}
$$

- There would be identity map between element nodal dof and global nodal dofs. That is, there is the same set of dofs used for both.
- Figure above shows two of such examples:

410/456

TrussTest.txt $dim 2$ ndofpn 2

Step 3: Set global number of dofs, stiffness, and force.

 $nndx = 3$

dim 2 **Andofpn 2 Nodes** nNodes 3 id crd 1 1.6 1.2 2 0 0 3 0 2.8

n = nddpn + nr/adus =6

By default every dof is free with zero force -> Provide prescribed dofs

PrescribedDOF np 3 node node_dof_index value 2 1 0.0 3 1 0.5 3 2 0.0

Provide free dofs with nonzero forces

ME517 Page 6

PrescribedDOF np 3 node node_dof_index value 2 1 0.0 3 1 0.5 3 2 0.0

Step 5: Set global free nodal dof

FreeDofs nNonZeroForceFDOFs 1 node node_dof_index value $12 - 1.0$

Step 6: Step 6: dof positions;

 $\{\text{RecCrit} x = x^3 \implies 2 \implies 2$

Step 8: Element dof maps M_t^e

- \bullet As mentioned, \mathbf{M}_t^e is a vector of size n_{dof}^e that maps elements dofs to global positions.
- For element 1, dofs are ordered as (loop over nodes, then loop over dofs for the node):

$$
a_1^e = \begin{bmatrix} a_1^{e_1} & a_2^{e_1} & \cdots & a_{12}^{e_1} \end{bmatrix}
$$

= $\begin{bmatrix} T_1 & U_{x1} & U_{y1} \end{bmatrix} \begin{bmatrix} T_2 & U_{x2} & U_{y2} \end{bmatrix} \begin{bmatrix} T_3 & U_{x3} & U_{y3} \end{bmatrix} \begin{bmatrix} T_4 & U_{x4} & U_{y4} \end{bmatrix}$

- \bullet We need to map these dofs to global dofs and have their position in M_t^e vector. For example, 1st dof of node 1 $(a_1^{e_1} = T_1)$ is mapped to first dof of n_3 which has position 2.
- 2nd dof of node 3 $(a_8^{e_1} = U_{y2})$ is mapped to 2nd dof of n_1 which has position $2(-2)$.
- \bullet The map for element e_1 is:

$$
M^{e_1}{}_{t} = [2 \ 3 \ 4 \ \bar{3} \ \bar{4} \ \bar{5} \ \bar{1} \ \bar{2} \ 1 \ 5 \ 6 \ 7]
$$

 $416/456$

Step 8: Element dof maps M_t^e : Simplified limited case

 n_{z}

Type = S => element = truss \mathcal{Q}

Step 8: Element dof maps M_t^e : Simplified limited case

A simplified pseudo code looks like: $ecdof = 1$ dof counter for element for $en = 1$: neNodes number of element nodes $gn = LEM(en)$ global node number for element node en for endof = 1: $ndofpn$ This number is fixed now, e.g., 2 for 2D trusses $dofMap(ecdof) = node(gn).dof(endof).pos$ $\text{gndof} = \text{endof}$, we bypass some steps here $\text{ecdof} = \text{ecdof} + 1$ increment counter end end

Step 9: Set element dofs a^e

Step 9: Set element dofs a^e: Simplified limited case

Similar to steps 1, 2, and 8, step 9 can be greatly simplified if we assume all nodes share exactly the same set of dofs.

```
• Noting n_{\text{don}} (ndofpn) = Number of dof. per node, simplified merged steps 8 & 9 are:
  dofs = zeros(nedof) element dofs (edof) resized to number of element dofs and zeroed
   \text{ecdof} = 1 dof counter for element
  for en = 1: neNodes number of element nodes
     gn = LEM(en) global node number for element node en
     for endof = 1: ndofpn This number is fixed now, e.g., 2 for 2D trusses
       if (node(gn).dof(endof).p == true) gndof = endof, we bypass some steps here
         dofs(ecdof) = node(gn).dof(endof).value; e dof val = corresponding global val
       end
       dofMap(ecdof) = node(gn).dof(endof).pos\text{ecdof} = \text{ecdof} + 1 increment counter
     end
  end
                                                                                       422 / 456
```
Step 10: Compute element stiffness/force

- · Almost all assembly of element stiffness/forces are done in a "black box".
- That is, as far as assembly of local to global stiffnesses and forces are considered, \bullet there is no need to know how the local stiffness matrix is assembled.
- This is if an object oriented language is used, most of these functions are virtual (i.e., different elements have different implementations for these computations under the same function name).
- For multiphysics problems the assembly of physics into the element is very much similar to assembly of elements into the global system: Each physics assembles its own part into element system which subsequently will be mapped to global system.
- Types of information needed before element stiffness/force computations:
	- Element type: e.g., truss or bar element; 1st, 2nd order, etc..
	- Geometry: Geometry of element (e.g., L^e for trusses).
	- \bullet Material properties: Properties needed such as A and E for trusses.

 $423/456$

id PhyElementTruss::Calculate_ElementStiffness_Force() // compute stiffness matrix: $ke.resize(4, 4);$ double factor = $A * E / L$;
for (int I = 0; I < 2; ++I) double f2 = factor;

if ((I + J) % 2 != 0)

f2 = -factor;

ke(2 * I, 2 * J) = c * c * f2;

ke(2 * I + 1, 2 * J) = ke(2 * I, 2 * J + 1) = c * s * f2;

ke(2 * I + 1, 2 * J + 1) = s * s * f2; cout << "ke\n" << ke << endl; Ax = x7 - X 1
Ay = y7 - Y1 (\forall, \forall) Ø \bigcap $C\nolimits$