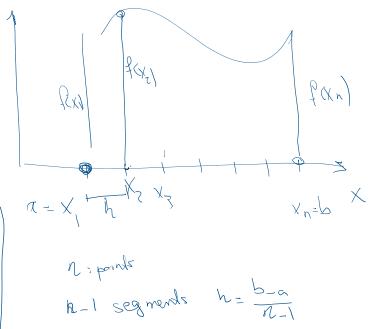
FEM20241202

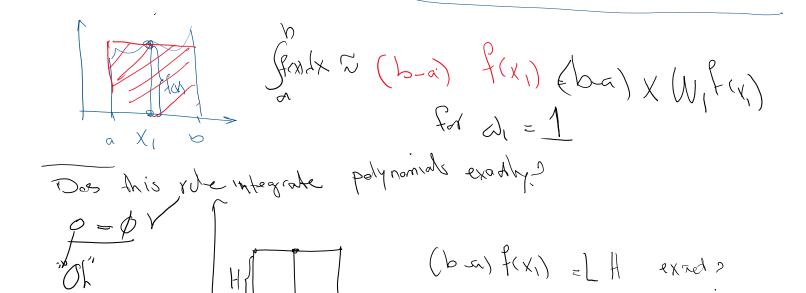
Monday, December 2, 2024 12:57 PM

Continue: Newton-Cotes

 $f(x)dx \sim (b-a) (Sci; f(x;))$ I doman

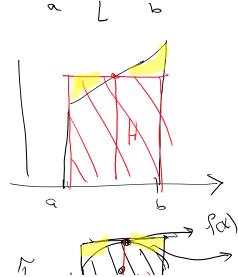
I point. rectangle scheme



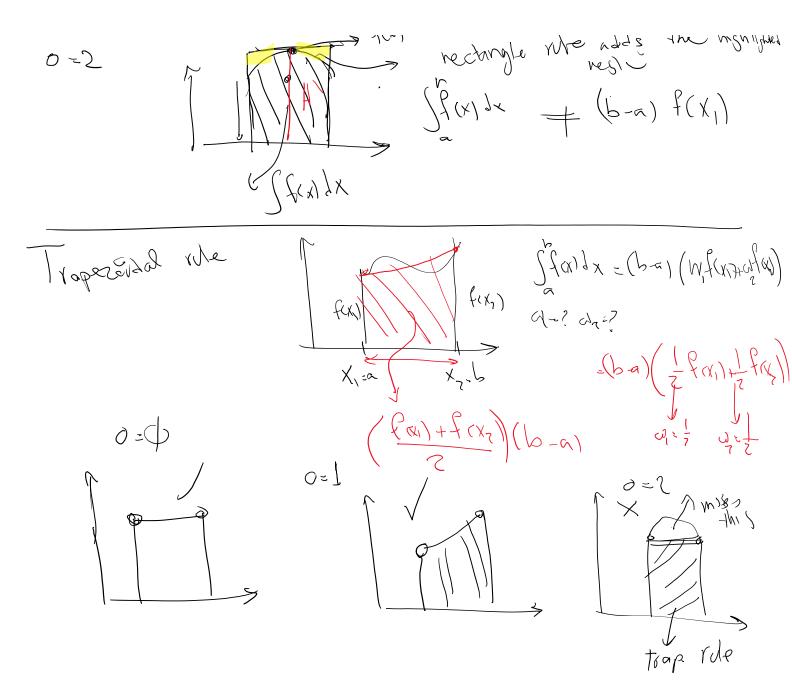


|f(x)| = LH

0 -)



ME517 Page 1



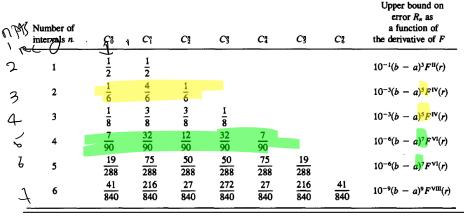
Trapezoidal scheme is not good as with one added point, still integrates only up to order = 1 exactly.

scheme (Simpson's scheme) 3 paint $\approx (b-a) \left(\omega_{1} f(x_{1}) + \omega_{2} f(x_{1}) + \omega_{3} f(x_{3}) \right)$ $= \left(b - a \right) \left(\omega_{1} f(x_{1}) + \omega_{2} f(x_{3}) + \omega_{3} f(x_{3}) \right)$ $= \left(b - a \right) \left(\omega_{1} f(x_{1}) + \omega_{2} f(x_{3}) + \omega_{3} f(x_{3}) \right)$ (fix) dx f(Kz) fix1) fix Ω X۱: gab Z 2-VMCNONNS $\omega_1, \omega_1, \omega_3 = ?$

$$\frac{\omega_{1}, \omega_{1}, \alpha_{3}}{f(x)} = 0 + 0, x + a, x +$$

Simpson's rules with odd number of points give one extra polynomial order integration

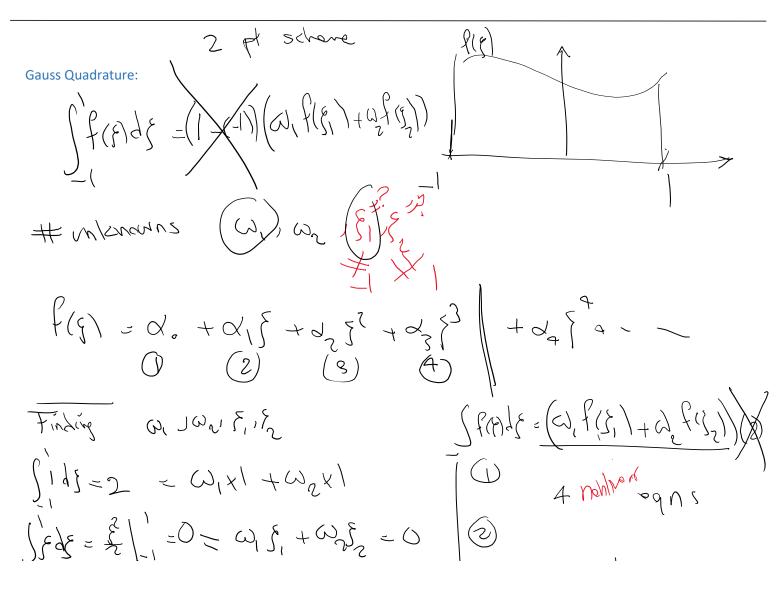
schame, <u>19</u> 288 75 288 <u>50</u> 288 <u>50</u> 288 <u>19</u> 288 $10^{-6}(b - a)^7 F^{v_1}(r)$ 5 216 840 272 840 27 840 $\frac{27}{840}$ 216 840 $\frac{41}{840}$ $\frac{41}{840}$ $10^{-9}(b - a)^9 F^{\text{VIII}}(r)$ 6 Trick in getting Windy,. $\int f(\xi) d\xi = (1 - (-1)) \left(\omega_1 f(\xi) - \dots + \omega_n f(\xi) \right)$ step find W; ١ iR $f_{z} = \int_{i} \left(\xi \right) \frac{f_{z}(\xi - \xi_{j})}{f_{z}(\xi_{i} - \xi_{j})}$ $f_{z} = \int_{i} \left(\xi_{i} - \xi_{j} \right)$ $f_{z} = \int_{i} \left(\xi_{i} - \xi_{j} \right)$ a - S,=) b- (n-) -i(f)de <u>~</u>) ω . Exa mplo ١



ME517 Page 5

Al Wory s use odd # point

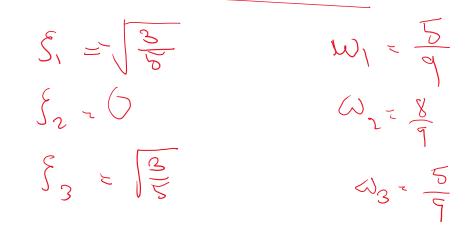
$$\begin{aligned} & = \underbrace{\int_{2}^{1} \left[\frac{1}{2} (\xi) d\xi}_{2} \right]_{2} = \underbrace{\int_{2}^{1} \left[\frac{1}{2} (\xi) d\xi}_{2} \right]_{2} \\ & = \underbrace{\int_{1}^{2} (\xi) d\xi}_{2} = \underbrace{\int_{1}^{2} (\xi - \xi) (\xi - \xi)}_{2} = \underbrace{\int_{1}^{2} (\xi - \xi) (\xi - \xi) (\xi - \xi)}_{2} = \underbrace{\int_{1}^{2} (\xi - \xi) (\xi - \xi) (\xi - \xi)}_{2} = \underbrace{\int_{1}^{2} (\xi - \xi) (\xi - \xi) (\xi - \xi) (\xi - \xi)}_{2} = \underbrace{\int_{1}^{2} (\xi - \xi) (\xi - \xi$$



ME517 Page 6

$$\begin{aligned} \int f_{1}^{2} f_{2}^{2} &= \frac{f_{1}^{2}}{5} \Big|_{1}^{2} = 0 \\ \int f_{1}^{2} f_{1}^{2} &= \frac{f_{2}^{2}}{3} \Big|_{1}^{2} &= \frac{1}{3}^{2} = \omega_{1} f_{1}^{2} + \omega_{1} f_{2}^{2} = 2 \\ \int f_{1}^{2} f_{1}^{2} &= \frac{f_{2}^{2}}{3} \Big|_{1}^{2} &= \frac{1}{3}^{2} = \omega_{1} f_{1}^{2} + \omega_{1} f_{2}^{2} = 2 \\ \int f_{1}^{2} f_{1}^{2} &= \frac{f_{1}^{2}}{3} \Big|_{1}^{2} &= 0 \\ \int f_{1}^{2} f_{1}^{2} &= \frac{f_{1}^{2}}{3} \Big|_{1}^{2} &= 0 \\ (2) \quad m_{1}^{2} h_{1}^{2} h_{1}^{2} &= 0 \\ (2) \quad m_{1}^{2} h_{1}^{2} h_{1}^{2} &= 0 \\ (3) \quad m_{1}^{2} h_{1}^{2} h_{1}^{2} &= 0 \\ (4) \quad m_{1}^{2} h_{1}^{2} h_{1}^{2} &= 0 \\ (4) \quad m_{1}^{2} h_{1}^{2} h_{1}^{2} &= 0 \\ (4) \quad m_{1}^{2} h_{1}^{2} h_{1}^{2} h_{1}^{2} &= 0 \\ (4) \quad m_{1}^{2} h_{1}^{2} h_{1}^{2} h_{1}^{2} h_{1}^{2} h_{2}^{2} h_{1}^{2} h_{2}^{2} h_{2}^{2} h_{2}^{2} h_{1}^{2} h_{2}^{2} h_{2}^{2} h_{1}^{2} h_{2}^{2} h_{2}^{2} h_{1}^{2} h_{2}^{2} h_{2}^{2} h_{2}^{2} h_{1}^{2} h_{2}^{2} h_{2}^{2} h_{1}^{2} h_{2}^{2} h_{1}^{2} h_{2}^{2} h_{2$$

 $\int f(z) dz = c z_1 f(z_1) + w_z f(z_2)$ (3) 5 ~~- | SI=-1-577. Si=+.577. What polynomial it integrals exactly x + x + t + t + x + x + Gauss Que J=2 TABLE 5.6 Sampling points and weights in Gauss-Legendre numerical integration (interval -1 to +1) α_i n r_i 0. (15 zeros) (15 zeros) ۲ ا ت ک ±0.57735 <u>02691 89626</u> 1,00000 > 00000 00000 1- =3 ±0.77459 66692 41483 0.55555 55555 55556 0.00000 000000 00000 0.88888 88889 88888 ±0.86113 63115 94053 0.34785 48451 37454 ±0.33998 10435 84856 0.65214 51548 62546 5 ±0.90617 98459 0.23692 68850 38664 56189 $f(\xi) \stackrel{l}{=} = \alpha f'(\xi) = \hat{f}(\delta)$ ± 0.53846 93101 05683 0.47862 86704 99366 0.56888 88888 0.00000 00000 00000 88889 0.17132 44923 6 ±0.93246 95142 03152 79170 ±0.66120 93864 66265 0.36076 15730 48139 ±0.23861 91860 83197 0.46791 39345 72691 of der 1 $\omega_1 = 1 \quad \xi_1 = -.5773502651.$ $\omega_{0,z} \left\{ \int_{2}^{z} z + .5 \mathcal{H}^{2} \right\}$ ت ک his W1 = 0.5553- - 56 S1- -.77459666 ...313 W1 - U. 888 833 - 52- 0 W2 : 0.55 - - - 56 53 = + 77959661 --[]



 $P_n(x)$ n 0 1 **7**0 7 [3 5 $\frac{1}{2}(3x^2-1)$ 3,0 $\frac{1}{2}(5x^3 - 3x) \frac{1}{8}(35x^4 - 30x^2 + 3)$ of this $\frac{1}{8}(63x^5 - 70x^3 + 15x)$ $\frac{\frac{1}{16}(231x^6 - 315x^4 + 105x^2 - 5)}{\frac{1}{16}(429x^7 - 693x^5 + 315x^3 - 35x)}$ $\frac{\frac{1}{128}(6435x^8 - 12012x^6 + 6930x^4 - 1260x^2 + 35)}{\frac{1}{128}(12155x^9 - 25740x^7 + 18018x^5 - 4620x^3 + 315x)}$ 9 are $\frac{1}{256}(46189x^{10} - 109395x^8 + 90090x^6 - 30030x^4 + 3465x^2 - 63)$ 10

Figure 4: Legendre polynomials (Source: http://en.wikipedia.org/wiki/Legendre_polynomials

Locolis talss pant

Si's are (nad n 2 d

TABLE 5.6 Sampling points and weights in Gauss-Legendre numerical integration (interval -1 to +1)

n	r _i	$lpha_i$				
1	0. (15 zeros)		2.	(15 zeros)		
2	±0.57735 0269	1 89626	1.00000	00000	00000	
3	±0.77459 66692 0.00000 0000		0.55555 0.88888	55555 88888	55556 88889	
4	±0.86113 6311 ±0.33998 1043		0.34785 0.65214	48451 51548	37454 62546	
5	+0.00617 0845	38664	N 73607	68820	56190	

TABLE 5.6 Sampling points and weights in Gauss-Legendre numerical integration (interval -1 to +1)

n	r_i			$\frac{\alpha_i}{2. (15 \text{ zeros})}$		
1	0. (15 zeros)					
2	± 0.57735	02691	89626	1.00000	00000	00000
3	±0.77459	66692	41483	0.55555	55555	55556
	0.00000	00000	00000	0.88888	88888	88889
4	±0.86113	63115	94053	0.34785	48451	37454
	±0.33998	10435	84856	0.65214	51548	62546
5	±0.90617	98459	38664	0.23692	68850	56189
	±0.53846	93101	05683	0.47862	86704	99366
	0.00000	00000	00000	0.56888	88888	88889
6	±0.93246	95142	03152	0.17132	44923	79170
	±0.66120	93864	66265	0.36076	15730	48139
	±0. 2 3861	91860	83197	0.46791	39345	72691

1. 50 Points Use a 3 point Gauss and 5 point Newton-Cote quadrature rule to evaluate the following integral and obtain their respective errors with respect to exact value of the integral $I_e = \tan^{-1}(2) - \tan^{-1}(-1)$. Quadrature points and weights are given in fig. 1.

Q

$$h^{2} \frac{b}{h^{2}} \frac{3}{4}$$

TABLE 5.5 Newton-Cotes numbers and error estimates

 Upper bound on error
$$R_r$$
 as a function of intervals $n - 1$

 Number of intervals $n - 1$
 C8
 C1
 C2
 C8
 C1
 C2
 C8
 C1
 C3
 C3
 C3
 C3
 C1
 Upper bound on error R_r as a function of intervals $n - 1$
 2
 1
 $\frac{1}{2}$
 2
 $C3$
 $C3$
 $C3$
 $C3$
 $C3$
 $10^{-1}(b - a)^3 F^{10}(r)$
 3^2
 $10^{-1}(b - a)^3 F^{10}(r)$
 3^2
 $10^{-3}(b - a)^5 F^{1V}(r)$
 4^2
 3^2
 $\frac{12}{8}$
 3^2
 12^2
 32^2
 7^2
 $10^{-3}(b - a)^5 F^{1V}(r)$
 5^3
 10^3
 3^2
 12^2
 32^2
 7^2
 $10^{-6}(b - a)^7 F^{V1}(r)$
 5^5
 19^9
 32^2
 12^2
 32^2
 7^2
 $10^{-6}(b - a)^7 F^{V1}(r)$
 5^3
 19^9
 288
 288
 $10^{-6}(b - a)^7 F^{V1}(r)$
 5^3
 19^9
 272^7
 216
 41
 $10^{-9}(b - a)^9 F^{VII}(r)$
 6^3
 41^3
 216^6
 277

ME517 Page 10

 $\begin{array}{rcl}
\frac{1}{5} & X_{3^{2}} & \stackrel{5}{5} & X_{4^{2}} & \stackrel{1}{125} & X_{5^{2}} & \stackrel{1}{5} & Z \\
\end{array} \\
= & \int f(x_{1}) x & \stackrel{1}{5} & X_{5^{2}} & \stackrel{1}{5} & Z \\
= & \frac{7}{90} & f(x_{1}) + \frac{37}{90} & f(x_{2}) + \frac{17}{90} & f(x_{3}) \\
+ & \frac{37}{90} & f(x_{4}) + \frac{7}{90} & f(x_{5}) \\
\end{array}$

2

_\