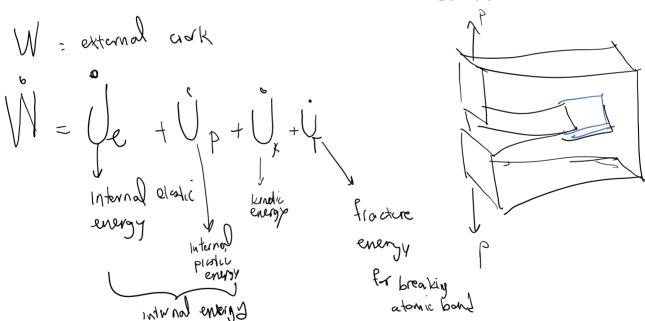

Fracture stress: discrepancy between theory and experiment

Ī) <u> </u>	- , 0				
	/Eγ			30	Sf				
	$\sigma_{th} = \sqrt{\frac{E\gamma}{\alpha_0}}$	a ₀ [m]	E [GPa]	σ_{th} [GPa]					
					mech!	ng h		/ (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		12000			0(1	1	~ high	60 >	166
	glass	$3*10^{-10}$	60	14	170	82	/ ""]"		\
	steel	10^{-10}	210	45	250	180		1 1	Prince to all
	silica fibers	10-10	100	31	25000	1.3	s we	get to	finer leigh
	iron whiskers	10-10	295	54	13000	4.2	scales	we g	el dose
	silicon whiskers	10^{-10}	165	41	6500	6.3		thoretial	estimate
	alumina whiskers	10-10	495	70	15000	4.7	to M	ING / CITON	espimate
	ausformed steel	10-10	200	45	3000	15			
	piano wire	10-10	200	45	2750	16.4			

Griffith's verification experiment

 Glass fibers with artificial cracks (much larger than natural crack-like flaws), tension tests

	Crack Length, 2a mm	Measured Strength, σ_f MPa	$\sigma_f \sqrt{a}$ MPa $\sqrt{ ext{m}}$	
sample 1 sample 2 sample 3 sample 4	$\begin{array}{c c} 3.8 \\ 6.9 \\ 13.7 \\ 22.6 \end{array}$ om the Griffith experimen	6.0 4.3 3.3 2.5	0.26 0.25 0.27 0.27	
(Data II)	om the Gimith experi ^{the}	a a	6p > \ \frac{7}{4a}	$\frac{dc}{4} \Rightarrow \frac{100}{4} & = \cos^2 \theta$

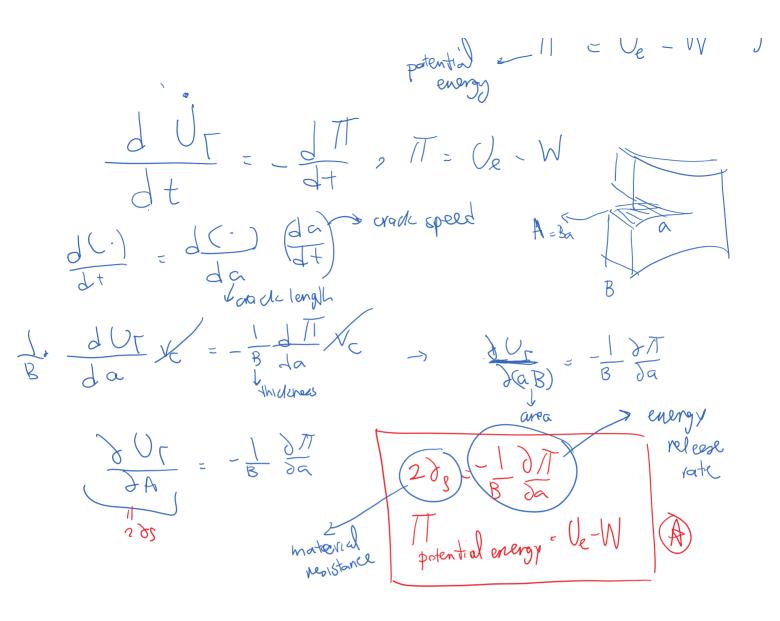

So, this experiment verifies the power of -0.5 of strength versus crack length.

We had the stress-based (using stress concentration concept) explanation why sigma_f << sigma_c

Energy-based explanation:

4.1.3. Cause of discrepancy:

2. Energy approach



Simplification:

- 1. Ignore plastic part (acceptable for more brittle fracture)
- 2. Ignore dynamic effect -> Kinetic energy (rate) is almost zero

$$\dot{V} = \dot{V}_{e} + \dot{V}_{f} \rightarrow \dot{V}_{f} = -(\dot{V}_{e} - \dot{V})$$

ME524 Page 2

Use equation (*) to explain why strength is much lower than theoretical strength

From Inglis solution

2a crack in an infinite domani

$$TT(\alpha) - T(\theta) = \frac{-\pi\alpha^2 s^2 B}{E}$$

$$\frac{d}{dA} = \frac{1}{B} \frac{d\pi}{d20} = -\frac{\pi a \delta^2}{E}$$

If the crack can prepade

$$-\frac{1}{3}\frac{\pi}{A} \geq 2\delta_{5}$$
 ented is $\delta = \delta_{6}$

(makerial strength)

$$-\left(-\frac{77a}{E}\right) = 2$$

$$6e = \sqrt{\frac{EV_8}{4a}}$$

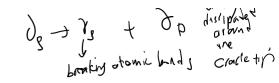
$$6e = 5\sqrt{\frac{EV_8}{a}}$$

Stress-concentration argument

$$6 \times .8 \sqrt{\frac{\epsilon \delta_3}{\alpha}}$$

Both approaches predict the same formula for the strength, except the factor upfront.

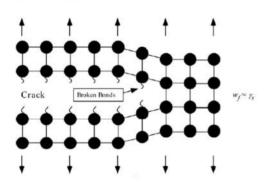
How can we incorporate plasticity (with some approximation)

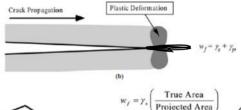

Energy equation for Plane stress ductile materials

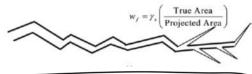
 $\sigma_c = \sqrt{\frac{2E\gamma_s}{\pi a}}$ Griffith (1921), ideally brittle solids

Irwin, Orowan (1948), metals

plastic work per unit area of surface created


$$\gamma_p\gg\gamma_s$$
 $\gamma_ppprox 10^3\gamma_s$ (metals)




Generalization of Energy equation

$$\sigma_f = \sqrt{\frac{2K w_f}{\pi a}}$$

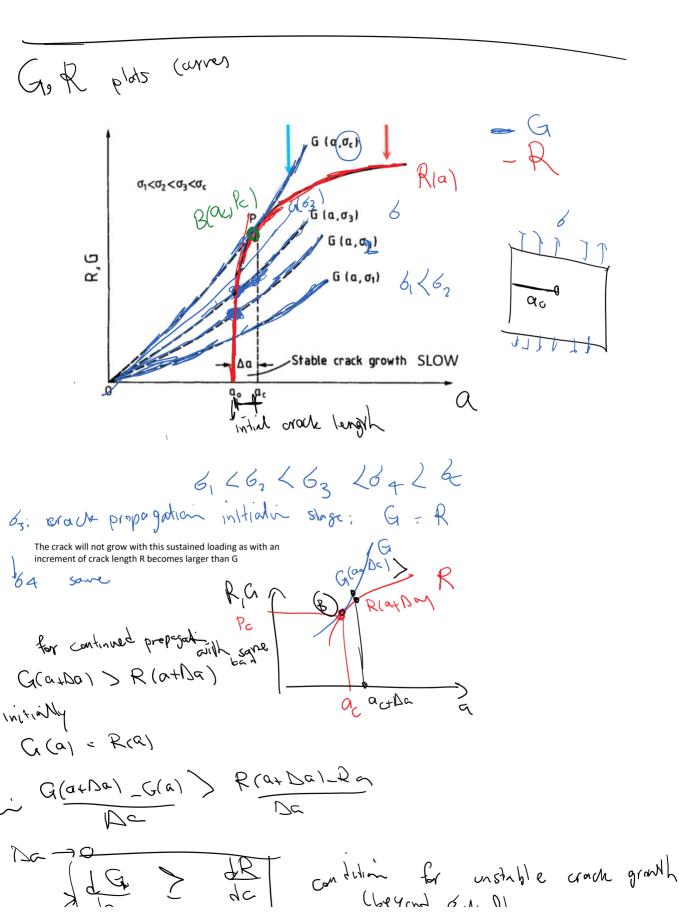
- w_f: Fracture energy from plastic, viscoelastic, or viscoplastic effects
- w_f can also be influenced by crack meandering and branching
- Caution: If nonlinear displacement regions are large enough this equation is not accurate as it is based on linear elastic solution $(\Pi = \Pi_0 - \frac{\pi \sigma^2 a^2 B}{E})$

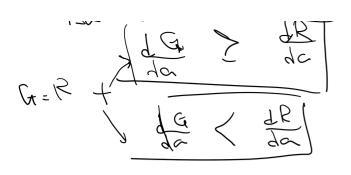
Energy release rate

Irwin 1956

$$G = -\frac{d\Pi}{dA}$$

Crack extension force


a.k.a


Crack driving force

when the crack grows - 27 > 28

find NWO

ME524 Page 5

LR condition for Cheyond Guraciall

Stable walk growth, loading should increase for the work to good

How to calculate G?

2. Using Stress intensity Packer (SIF)