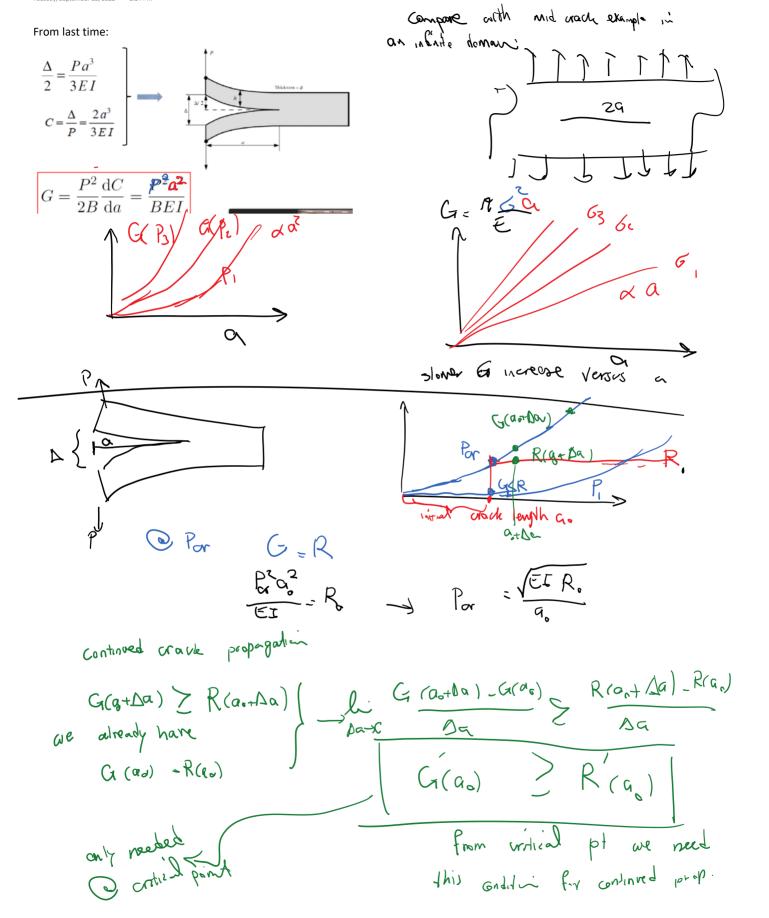
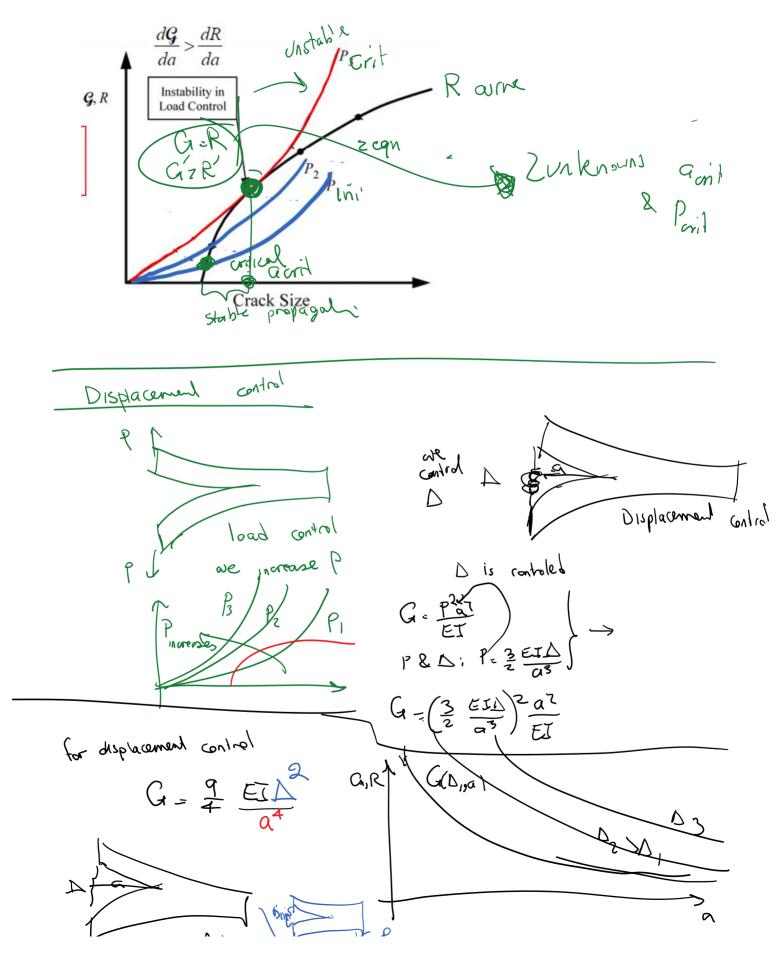
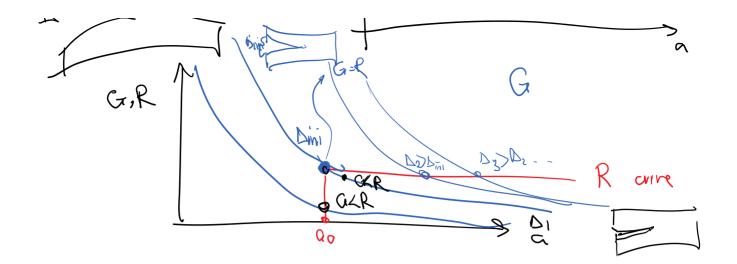
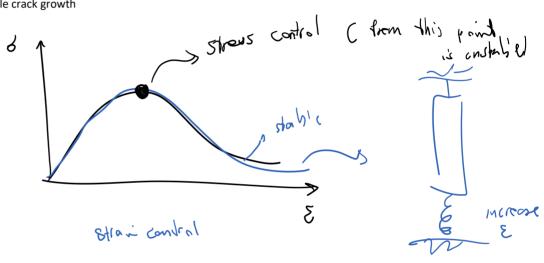
2022/09/13 - Tuesday, September 13, 2022 2:24 PM

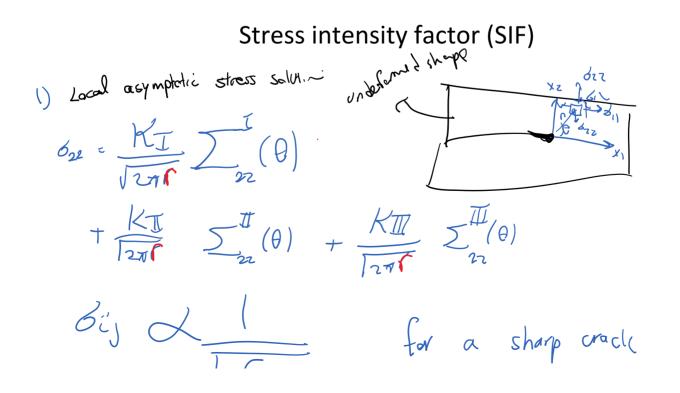


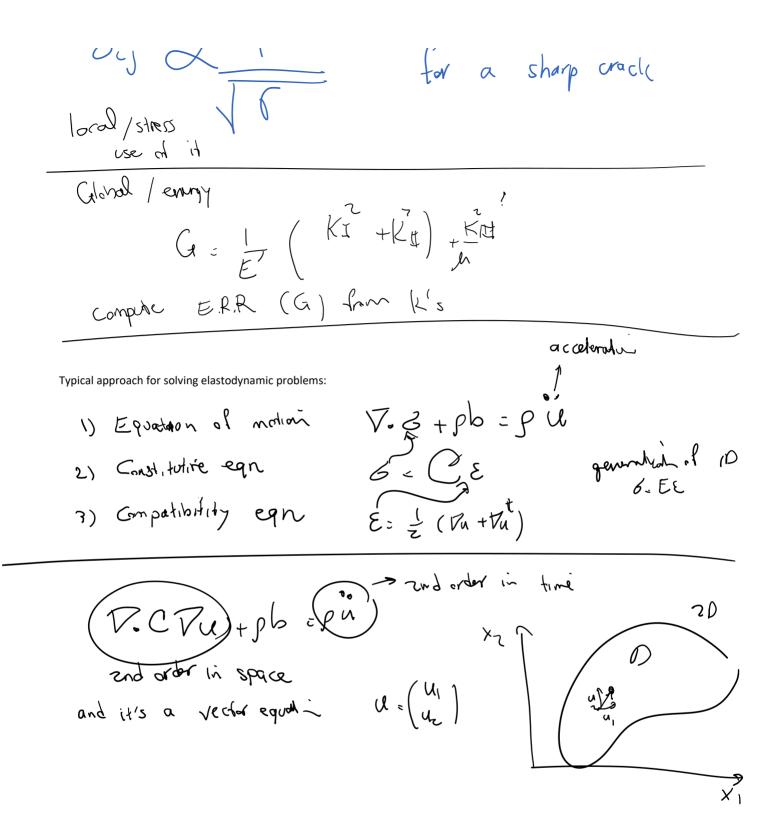




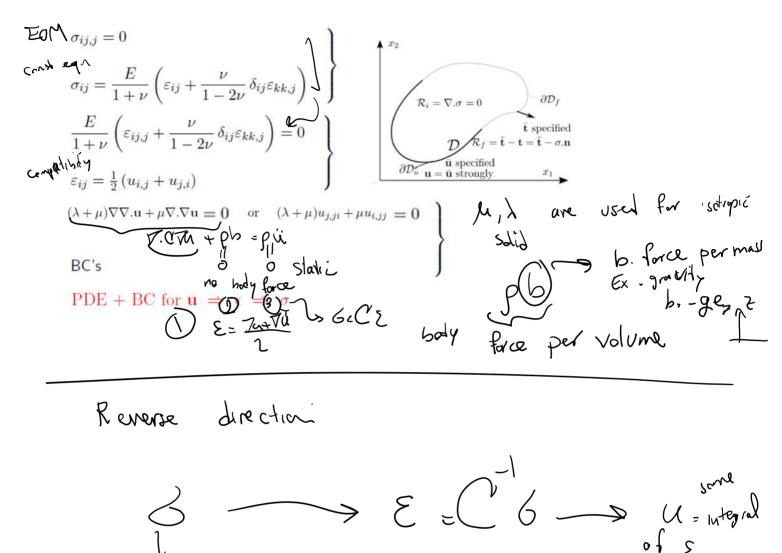
We need to increase the applied displacement \triangle for the crack to continue propagation -> stable crack growth

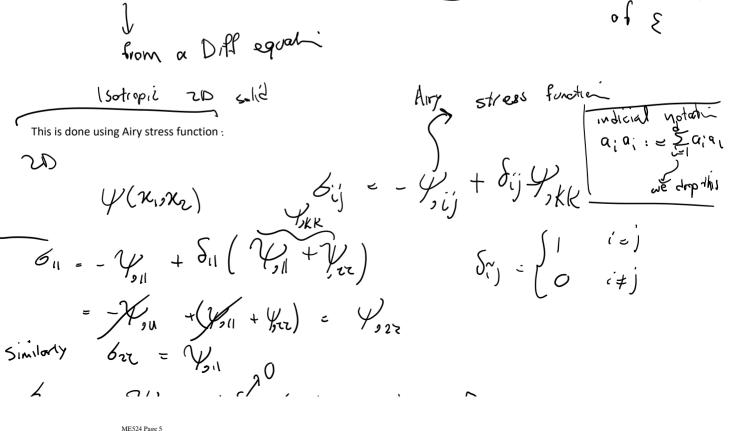




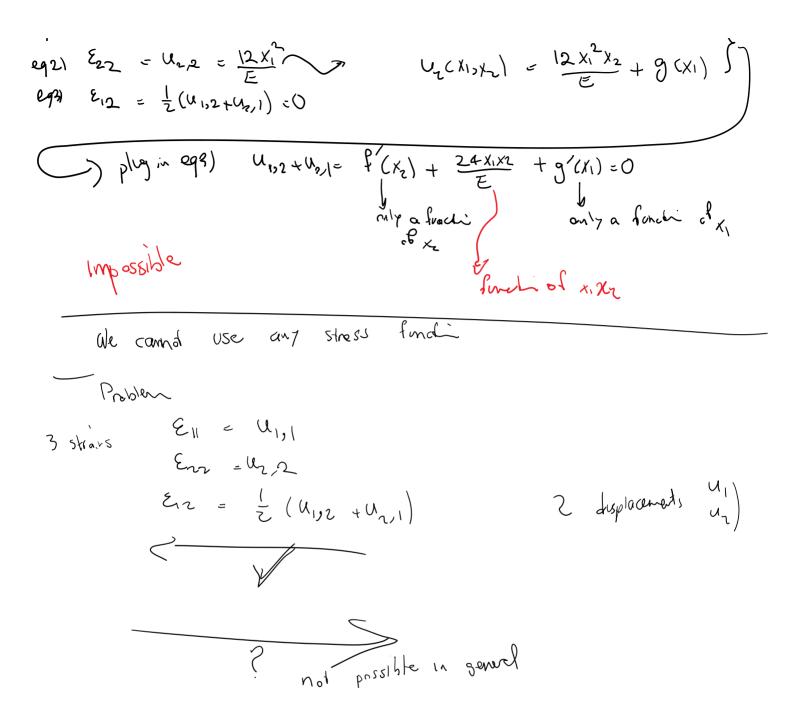


Displacement approach





Similarly
$$\delta_{22} = \frac{|Y_{21}|}{|Y_{21}|} + \frac{1}{|Y_{22}|} = -\frac{1}{|Y_{22}|} + \frac{1}{|Y_{22}|} = -\frac{1}{|Y_{22}|} = -\frac{1}$$



In 2D, the problem is that we have 3 equations and 2 unknowns (u1 and u2). We may not be able to solve u1, u2 in general.

Can we always obtain u from strain? No

3D) 6 strains -> 3 displacements

$$3 \qquad 3 \qquad 3 \qquad 0 \qquad \text{mpatibulity conditions one needed}$$

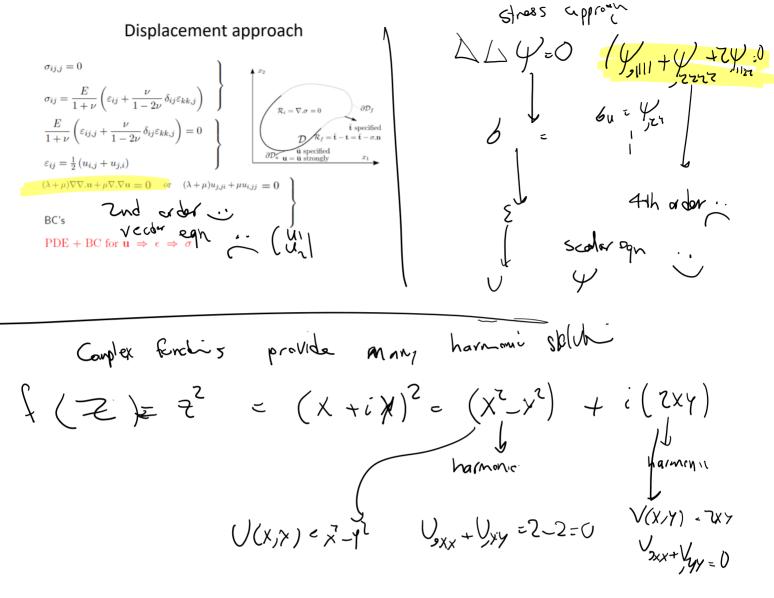
$$\frac{\partial^2 \varepsilon_{ik}}{\partial x_j \partial x_j} + \frac{\partial^2 \varepsilon_{jj}}{\partial x_i \partial x_k} - \frac{\partial^2 \varepsilon_{ij}}{\partial x_i \partial x_j} - \frac{\partial^2 \varepsilon_{ij}}{\partial x_j \partial x_k} = 0.$$
2D); There is only 1 equals

$$(\text{ampatibulity coddin} \quad (\text{Gubble 2} + \text{E}_{22/11} - 2 \text{E}_{12/12} = 0) \quad (\textbf{M})$$

Compatibility calded
is 20
S down use
$$U \rightarrow E \rightarrow \text{satisfies}$$

Eq. (U₁) $\rightarrow E_{13}v_2 \rightarrow U_{12}v_2$
Eq. (U₁) $\rightarrow E_{13}v_2 \rightarrow U_{12}v_1$
Eq. (U₁) $\rightarrow E_{13}v_1 \rightarrow U_{22}v_1$
Eq. (U₁) $\rightarrow E_{12}v_1 \rightarrow U_{22}v_1$
Eq. (U₁) $\rightarrow 2E_{23}v_2 \rightarrow U_{22}v_3$
Which Arry funct approach
 $\psi \rightarrow \begin{pmatrix} G_{11} & e & Y_{12}v_1 \\ G_{12} & e & Y_{12}v_1 \\ G_{12} & e & Y_{12}v_1 \end{pmatrix}$
 $e_{12} = \frac{1+v}{E}(-\psi_{12}+(1-v)\delta_{10}\psi_{12})$
 $\int U_{11} = \frac{1+v}{E}(-\psi_{11}+(1-v)\delta_{10}\psi_{12})$
 $\int U_{11} = \frac{1+v}{E}(-\psi_{12}+(1-v)\delta_{10}\psi_{12})$
 $\int U_{11} = \frac{1+v}{E}(-\psi_{11}+(1-v)\delta_{10}\psi_{12})$
 $\int U_{11} = \frac{1+v}{E}(-\psi_{11}+(1-v)\delta_{10}\psi_{12})$

ME524 Page 8



Z', Zt, Sint