Different elements/methods to compute K

EDI that we covered last time

Use two layers + and even with normal elements we get very good results for J and K

Is using finer finite element method going to address the other two method's inaccuracies

J integral: 2. EDI FEM Aspects

- Since $J_0 = -\Theta$ the inner J_0 collapses to the crack tip (CT)
- J₁ will be formed by element edges
- By using spider web (rozet) meshes any reasonable number of layers can be used to compute J:

Computational project Launch Ansys mechanical APDL

Make sure to use shared memory option on your computer after launching the program:

Steps:

Use plane strain Add the material

Use plot cntrls to show keypoint, line, area numbers

<u>File Select List Plot PlotCtrls WorkPlane Parameters Macro MenuCtrls Help</u>

Creating straight lines between keypoints

After plotting the lines

Next, create the areas:

Apply BCs

Bottom lines except the crack segment selected

Lab2 DOFs to be constrained All DOF UX UY UY Apply as Constant value VALUE Displacement value OK Apply Cancel Help	[DL] Apply Displacements (U,F	ROT) on Lines			-
Apply as Constant value VALUE Displacement value OK Apply Cancel Help	Lab2 DOFs to be constrained		A U	NI DOF IX IV	ST
VALUE Displacement value OK Apply Cancel Help	Annhan			γ	 1.5
VALUE Displacement value 0.0 OK Apply Cancel Help	Арріу аз			Constant value	
		Apply	Cancel	Help	

Similar thing for the left side but Ux = 0

Main Menu ۲ Ans • Meshing 202 Checking Ctrls STUDENT Numbering Ctrls NOV 1 20 15:15 Archive Model Coupling / Ceqn ■ Loads Analysis Type Apply PRES on Lines Define Loads · Pick C Unpick Settings Apply (Single C Box C Polygon C Circle Structural Loop Displacement **■** Force/Moment Count = 0 Pressure Maximum (= 14 Minimum = 1 P On Lines Line No. = ➢ On Areas ➢ On Nodes List of Items On Node Components C Min, Max, Inc On Elements On Element Components From Fluid Analy Apply A On Doome OK

Apply the load on the top

Enter -10

Next is meshing We first specify crack tips so a spider web mesh is created around it

Choose concentrated KP

Do the following for all the crack tips

Ready to mesh it now

We want to calculate K and J for the right crack tip on the bottom

Recall displacement-based formula:

1. K from local fields

- 1. Local CS
 - Plot nodes

\underline{W} orkPlane Parameters \underline{M} acro	Me <u>n</u> uCtrls <u>H</u> elp	
Display Working Plane Show WP Status WP Settings		
Offset WP by Increments Offset WP to Align WP with		
Change Active CS to Change Display CS to		STUDENT NOV 1 200 15-35-1
Local Coordinate Systems 🔸	Create Local CS 🔸	At WP Origin
	Delete Local CS Move Singularity	By 3 Keypoints + By 3 Nodes + At Specified Loc +

Number 11 is fine

-		
Create CS By 3 Nodes		\times
[CS] Create Local CS by 3 Nodes KCN Ref number of new coord sys	[]1	STUD
KCS Type of coordinate system	Cartesian 0 💌	
Following used only for elliptical and toroidal systems		
PAR1 First parameter PAR2 Second parameter	1	
OK Apply	Cancel Help	\sim

Call this coordinate system WorkPlane Parameters Macro MenuCtrls Help **Display Working Plane** Show WP Status WP Settings ... Offset WP by Increments Offset WP to , Align WP with . Change Active CS to **Global Cartesian** Change Display CS to Global Cylindrical ٠ Local Coordinate Systems ٠ Global Cylindrical Y **Global Spherical** Specified Coord Sys Working Plane

Change Active CS to Specified CS		\times
[CSYS] Change active coordinate system to spec KCN Coordinate system number	cified system	
OK Apply	Cancel Help	
$- \cdot \cdot \cdot \cdot \cdot - \ell \cdot$	A	7 11

2. Defining the path:

by Nodes	
· Pick	C Unpick
6 Single	C Box
C Polygon C Loop	C Circle
Count =	• •
Maximum =	979
Minimum =	2
Node No. =	•
(List of	Items
⊂ Min, Ma	x, Inc
OK	Apply
OK Reset	Apply Cancel

💕 By Nodes	× STUDENT
PATH] Define Path specifications	
Name Define Path Name :	cb ⁻ pų
Sets Number of data sets	30
Div Number of divisions	20
OK Cancel	Help

********* PATH STATUS ******** Path nPts nSets nDiv CP_BR 3 30 20

General Postproc
Data & File Opts
Results Summary
Read Results
Failure Criteria
Plot Results
List Results
Query Results
Options for Outp
Results Viewer
Nodal Calcs
Total Force Sum
Sum @ Each Node
Summation Pt
Stress Int Factr

Stress Intensity Factor	×
[KCALC] Stress Intensity Factors KI, KII, KIII KPLAN Disp extrapolat based on MAT Material num for extrap KCSYM Model type KLOCPR Print local disp's?	Plane strain 1 Half - symm b.c.
OK Cancel	Help

S Mechanical APDL 2022 R2 Output Window

***** ROUTINE COMPLETED ***** CP = 25.359	
***** MAPDL ANALYSIS DEFINITION (PREP7) *****	
ENTER /SHOW,DEVICE-NAME TO ENABLE GRAPHIC DISPLAY ENTER FINISH TO LEAVE PREP7 PRINTOUT KEY SET TO /GOPR (USE /NOPR TO SUPPRESS)	
PARAMETER _Z1 = 3.00000000	
Define Path Name= CP_BR nPts= 3 nSets= 30 nDiv= 20 PPATH Point= 1 Node= 242 X,Y,Z= 5.000 0.000 0.000 cs= 11 PPATH Point= 2 Node= 249 X,Y,Z= 4.950 0.000 0.000 cs= 11 PPATH Point= 3 Node= 248 X,Y,Z= 4.800 0.000 0.000 cs= 11	
***** ROUTINE COMPLETED ***** CP = 26.188	
***** MAPDL RESULTS INTERPRETATION (POST1) *****	
ENTER /SHOW,DEVICE-NAME TO ENABLE GRAPHIC DISPLAY ENTER FINISH TO LEAVE POST1	
20=10 p	
E=DO	
K ₁ = ~~ 1 ~ 10 J R(S)	

_