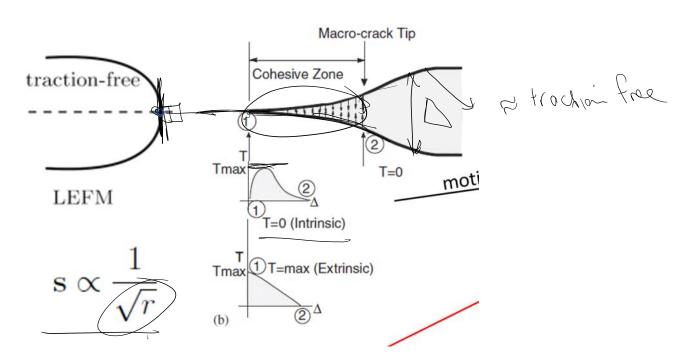
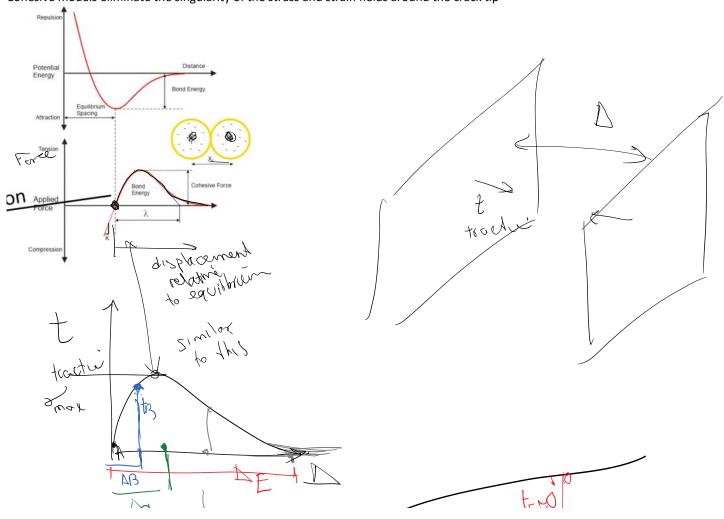
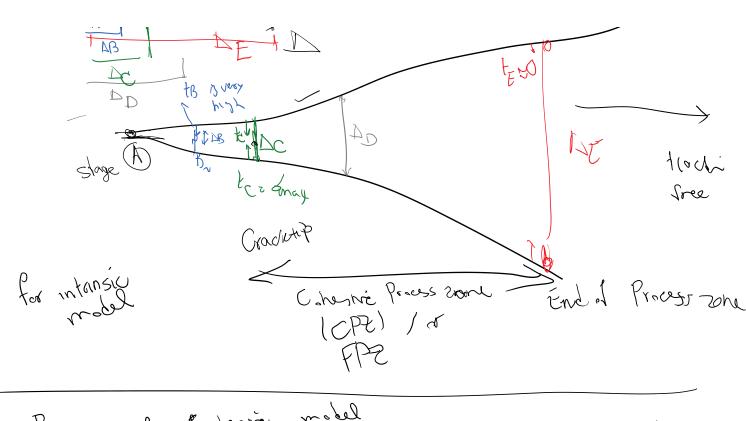
Cohesive models continued:



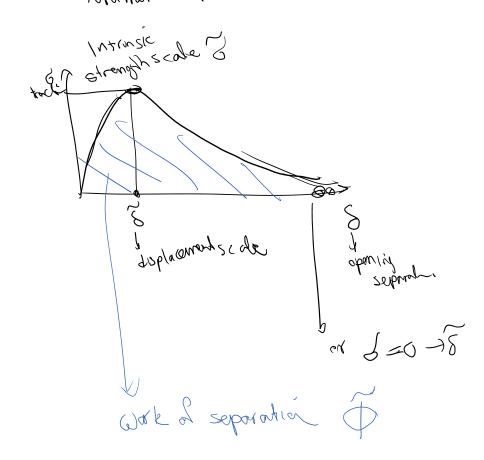
Cohesive models eliminate the singularity of the stress and strain fields around the crack tip





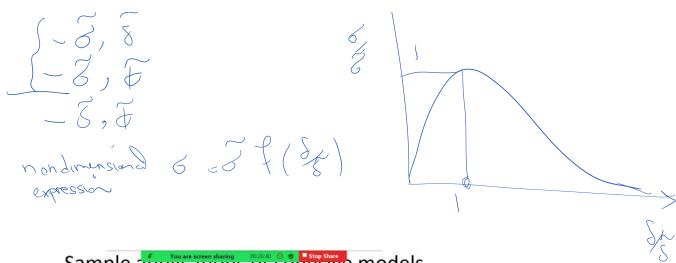
ledon Yoramadurs of Cohorine

axtrinsic



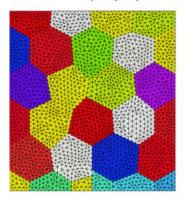
displacement for 6=0

Cohesive models are defined by two out of these three parameters

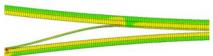


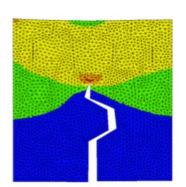
Sample applications or conesive models

fracture of polycrystalline material

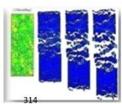


delamination of composites

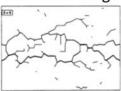




fragmentation



Microcracking and branching

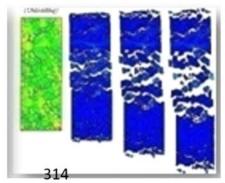


Extrinsic

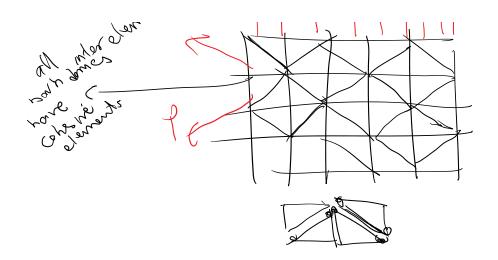
15

intemsic

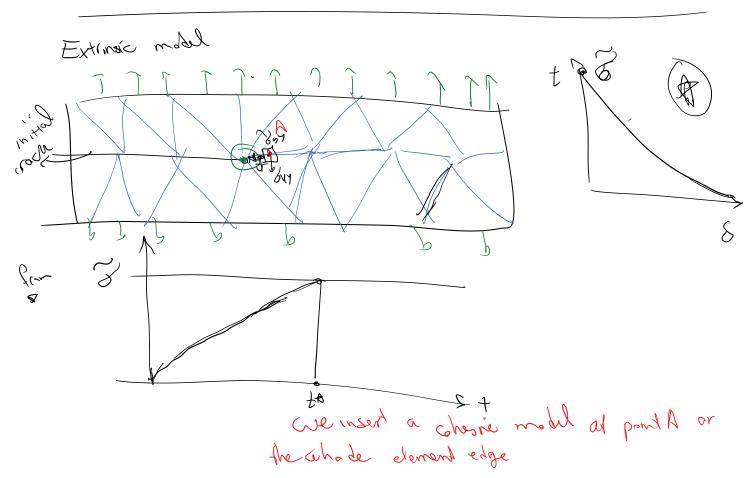
models

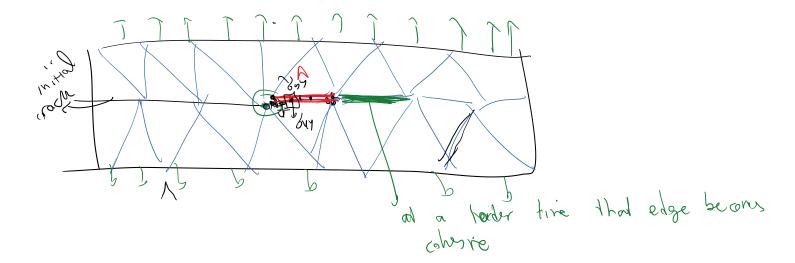


M. mes Johns

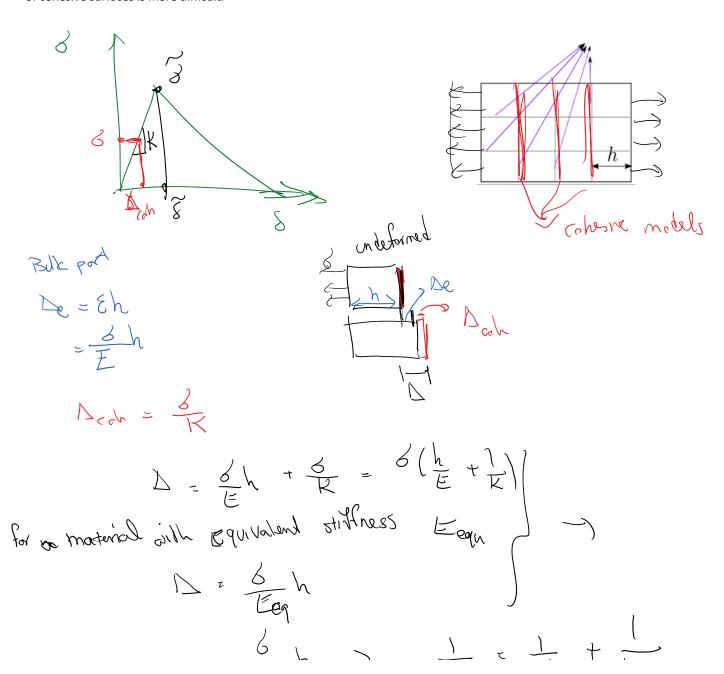


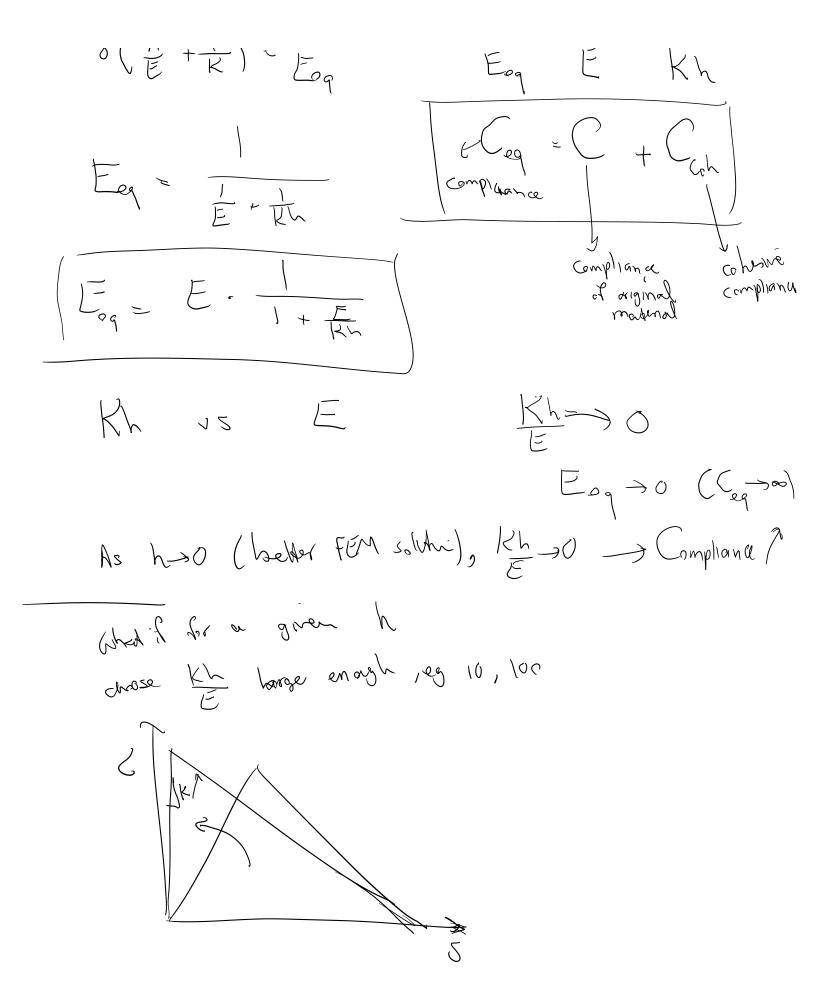
Artificial compliance -> as the mesh gets finer the structure gets more and more compliant





We can do similar fragmentation problems with extrinsic models, but handling the mesh connectivity and interactive insertion of cohesive surfaces is more difficult.





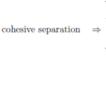
Unfortunately, we cannot use arbitrarily high K (penalties) in general, as the system matrices become difficult to solve (bad

conditioning)

· Artificial compliance becomes important if cohesive surfaces are added between all elements for intrinsic models to find crack propagation path.

• The artifical compliance is computed as,

$$\begin{array}{lll} \varDelta &=& \varDelta_c + \varDelta_c, & \varDelta_c = \text{ elastic displacement}, \varDelta_c = \text{ cohesive separation} \\ \dfrac{\sigma}{E_{\text{eff}}} h &=& \dfrac{\sigma}{E} h + \dfrac{\sigma}{K} & \Rightarrow \\ \dfrac{1}{E_{\text{eff}}} &=& \dfrac{1}{E} + \dfrac{1}{Kh} & \Rightarrow \end{array}$$



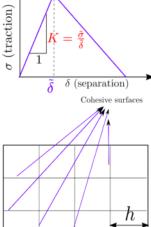
324

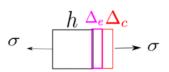
Artificial compliance is,

$$\begin{split} C_c &= \frac{1}{Kh} = \frac{\bar{\delta}}{\bar{\sigma}h} = \frac{1}{E_c}, \text{where} \\ E_c &= Kh = \frac{\bar{\sigma}h}{\bar{\delta}}, \text{and effective elastic modulus is} \\ \frac{1}{E_{\text{eff}}} &= \frac{1}{E} + \frac{1}{E_c}, \quad \Rightarrow E_{\text{eff}} = \frac{EE_c}{E + E_c} \end{split}$$

 \bullet That is the smaller element spacing h or softer the initial slope K of TSR the higher artificial compliance (higher errors)

· While extrinsic cohesive models do not have the same problem, adaptive insertion of cohesive surfaces is more challenging for them.





SM e)

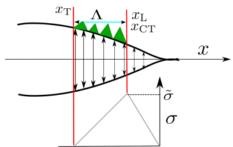
Manastade of displacement

Magnitude of displacements = Scale of skini for fracture 3 ~ 5 E _ Strain scale Finite Element intial crack (elements across) recommendati

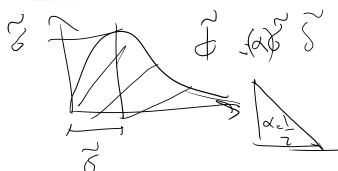
Why process zone size is important?

- Importance of process zone size \varLambda
 - Static estimate:

$$\begin{split} & \varLambda = \varsigma \pi \frac{\mu}{1 - \nu} \frac{\tilde{\phi}}{\tilde{\sigma}^2} \propto \tilde{L} \\ & \varsigma = \begin{cases} \frac{1}{4} & \text{Dugdale model} \\ \frac{9}{16} & \text{Potential-based TSRs} \end{cases} \end{split}$$



0 E



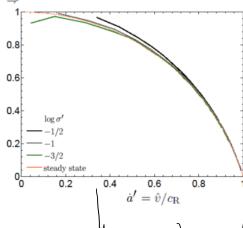
- Minimum number of elements in process zone size:
 There should be at least 4-10 elements along the PZ
- Dynamic estimate: PZS decreases as crack speed \hat{v} approaches Rayleigh wave speed c_{R}

$$\Lambda(\hat{v}) = \frac{\Lambda}{A(\hat{v})}, \quad A(\hat{v}) \to 0 \text{ as } \hat{v} \to c_{\mathrm{R}} \quad \Rightarrow 1$$

Smaller elements are needed in PZT as crack accelerates!

downspaying 2150,

321



hornated crack speed

and tends to

CR Rayleigh ware speed

$$\sqrt{\tilde{\phi}} = \tilde{\sigma}\tilde{\delta}$$

Energy 2 out of the three are independent

$$\tilde{p} = \rho \tilde{v} = \frac{\tilde{\sigma}}{c_{\rm d}}$$

$$\sqrt{\tilde{E}} = \frac{\tilde{v}}{c_{\rm d}} = \frac{\tilde{\sigma}}{\rho c_{\rm d}^2}$$

$$\tilde{\rho} = \tilde{\sigma}\delta$$
 Energy
$$\tilde{\rho} = \tilde{\sigma}\delta$$
 Linear momentum
$$\tilde{E} = \frac{\tilde{v}}{c_{\rm d}} = \frac{\tilde{\sigma}}{\rho c_{\rm d}^2} \propto \frac{\tilde{\sigma}}{\|\mathbf{C}\|} \qquad \text{Strain}$$

$$\tilde{v} = \frac{\tilde{\delta}}{\tilde{\tau}} = \frac{\tilde{\sigma}}{\rho c_{\rm d}} \qquad \text{Velocity}$$

$$\tilde{L} = c_{\rm d}\tilde{\tau} = \frac{\rho c_{\rm d}^2 \tilde{\delta}}{\tilde{\sigma}} \propto \Lambda^0 \int_{\tilde{\sigma}} \tilde{\delta} \qquad \text{Length}$$
 Time

 Length Process zone size Λ

Time Influences time step for time marching methods

