K-G relationship (cont.)

Mode I

$$
G_I = \begin{cases} \frac{K_I^2}{E} & \text{plane stress} \\ (1 - v^2) \frac{K_I^2}{E} & \text{plane strain} \end{cases}
$$

Mixed mode

$$
\boxed{G = \frac{K_I^2}{E'} + \frac{K_{II}^2}{E'} + \frac{K_{III}^2}{2\mu}}_{E' = \left\{ \begin{array}{l} \frac{E}{1-\nu^2} \;\; \text{for plane strain} \\ E \;\; \text{for plane stress} \end{array} \right.}
$$

Equivalence of the strain energy release rate and SIF approach

Mixed mode: G is scalar => mode contributions are additive

Assumption: self-similar crack growth!!!

Self-similar crack growth: planar crack remains planar (da same direction as a)

Key use: by having K's we can determine if the crack grows or not.

Imagine we just have mode I fracture:

$$
G=\frac{k_{I}^{2}}{E}
$$
 does the result g/m^{2} .
\n $G\ge R$ double g/ms
\n $\frac{k_{I}^{2}}{E}=\frac{R}{\sqrt{R}}$ $K_{I}=\sqrt{R}E^{\prime}=K_{Ic}$ $dosek$ g/mth
\n $\frac{k_{I}}{E}$: Critcd stress intensity factor
\n $(toyhrus)$ R_{Im}
\n K_{I} $chch$
\n R_{I} $chch$
\n R_{I} $chch$

ME524 Page 1

Side note related to last time

 $K_{\tau_{c}} \circ (\overline{f(\frac{\alpha}{W})\sqrt{\pi \, \alpha}}) \, \delta$

ELSEVIER

European Journal of Mechanics A/Solids 21 (2002) 105-120

Dynamic fragmentation of brittle solids: a multi-scale model

Christophe Denoual^a, François Hild^{b,*}

^a DGA/CTA-Département Matériaux, Surfaces, Protection, 16 bis avenue Prieur de la Côte d'Or, F-94114 Arcueil Cedex, France, now at Département de Physique Théorique et Appliquée CEA/DAM, BP 12, F-91680 Bruyères le Chatel Cedex, France b LMT-Cachan, ENS Cachan/CNRS/University Paris 6, 61 avenue du Président Wilson, F-94235 Cachan Cedex, France

Received 30 November 2000; revised and accepted 11 October 2001

Plastic Fracture Mechanics (PFM)

- When can we use LEFM

5.2. Plastic zone models

- 1D Models: Irwin, Dugdale, and Barenbolt models

 $LT|N \sim \alpha$ good

MICOR

When

 \rightarrow //'p

bos Ks Find r_p: 644

Plastic correction: 1st order approximation

 344

To get the actual Process zone size (PZS) = r_y or r_p , we need to solve the problem (BC + PDE + constitutive equations) from the beginning to find the correct solution. Where around the crack the material yields or undergoes large inelastic deformation is called the PZS.

Rather than doing this difficult problem, we can do a bit better than the 1st order approximation as shown below:

This is better than r_y, but still is not doing any stress redistribution.

ME524 Page 8

3-a
$$
\frac{1}{\pi}
$$
 years
\n3-a $\frac{1}{\pi}$ years
\n3-a $\frac{1}{$