From last time

2.2 Virtual crack extension

Potential energy is given by \bullet

- Only the few elements that are distrorted contribute to $\frac{\partial K}{\partial a}$
- $\bullet\,$ We may not even need to form elements and assemble K for a and $a + \Delta a$ to obtain $\frac{\partial K}{\partial a}$. We can explicitly obtain $\frac{\partial k^e}{\partial a}$ for elements affected by crack growth by computing derivatives of actual geometry of the element to parent geometry.

• This method is equivalent to J integral method (Park 1974)

2.2 Virtual crack extension: Mixed mode

• For LEFM energy release rates G_1 and G_2 are given by

$$
J_1 = G_1 = \frac{K_I^2 + K_{II}^2}{E'} + \frac{K_{III}^2}{2\mu}
$$

$$
J_2 = G_2 = \frac{-2K_I K_{II}}{E'}
$$

• Using Virtual crack extension (or elementary crack advance) compute G_1 and G_2 for crack lengths $a, a + \Delta a$ π \overline{a}

 $K_I = \frac{3}{2}$

$$
J_1 = G_1 = \frac{K_1^2 + K_{II}^2}{E'} + \frac{K_{III}^2}{2\mu}
$$
\n
$$
J_2 = G_2 = \frac{-2K_1K_{II}}{E'}
$$
\n
$$
J_3 = \frac{1}{2} \sum_{i=1}^{N} \theta_i = 0
$$

• Obtain K_1 and K_{II} from:

Note that there are two sets of solutions!

$$
s = 2\sqrt{\frac{G_1 - G_2}{\alpha}}
$$
 and $\alpha = \frac{(1+\nu)(1+\kappa)}{E}$

 $\frac{s\pm\sqrt{s^2+\frac{8G_2}{\alpha}}}{\mathbf{4}}$

6.1.4.J integral

J integral

Uses of J integral:

1. LEFM: Can obtain K_1 and K_{II} from J integrals (G = J for LEFM)

$$
J_1 = G_1 = \frac{K_I^2 + K_{II}^2}{E'} + \frac{K_{III}^2}{2\mu}
$$

$$
J_2 = G_2 = \frac{-2K_I K_{II}}{E'}
$$

Methods to evaluate J integral:

1. Contour integral:

1. Contour integral:
\n
$$
J_1 = \int_{\Gamma} \left(w dy \middle| - t \frac{\partial u}{\partial x} d\Gamma \right)
$$
\n
$$
J_2 = \int_{\Gamma} \left(w dx \middle| - t \frac{\partial u}{\partial y} d\Gamma \right)
$$
\n2. Equivalent (Energy) **domain** integral (EDI):

- surface/volume integral
- Gauss theorem: line/surface (2D/3D) integral \bullet
- **Contract Contract** Much simpler to evaluate computationally
- Easy to incorporate plasticity, crack surface tractions, thermal strains, etc.
- Prevalent method for computing J-integral \bullet

Earlier we talked about the limitations of the J integral:

Energy release rate of J integral: **Assumptions**

- 1. Homogeneous body
- 2. Linear or non-linear elastic solid
- No inertia, or body forces; no initial stresses
- Ï٨ 4. No thermal loading

Inaccurate/Impractical evaluation of J using contour integral

J integral: 2. EDI: Derivation

Divergence theorem: Line/Surface (2D/3D) integral Surface/Volume Integral Application in FEM meshes \mathbf{m}_{i} A^* $q=0$ \vec{e}_2 $\overrightarrow{x_1}$ \overrightarrow{A}^* $a=1$ \tilde{L} $I\left(\frac{\Gamma_{o}}{\Gamma_{o}}\right)\rightarrow0$ 2D mesh covers Original J integral contour M crack tip $\overrightarrow{d}_{1} = \sqrt{(W+T) \Sigma_{i1} -6i \overrightarrow{J} \frac{\lambda_{i1}}{\lambda_{i1}}}.$ \mathcal{L}_z $-m_i$ ω and
to take the limit of \sim 70 $-\overline{\delta}_{1}$ = $\int f(m)$ as $+\int I(m)qds$ show q function to $-\overline{\partial}_{1} + \frac{\int\Im r_{1} d\overline{\Delta}}{U}$ $H = \frac{\int d^{4}x}{\int d^{4}x} + \frac{\int d^{4}x}{\int d^{4}x} + \frac{\int d^{4}x}{\int d^{4}x}$ $\int (Ig) mds = \left(\frac{\partial Ig}{\partial x_i}dy\right)$ M 7,0 baynder y $\sqrt{\pi}$ $\left[\begin{array}{ccc} \end{array} \right]$

$$
\frac{1}{\sqrt{1}} = \int_{0}^{\infty} \frac{\partial}{\partial y} \cdot \left[\left(\frac{(a_{ij} \partial U_{1j}}{\partial x_{i}} - (W_{1j} \overline{U}) \partial_{ij} \partial_{ij} \right) \partial_{ij} \partial_{ij} \right] dy}{\partial x} + \int_{0}^{\infty} \left[(W_{1j} + W_{2j} \overline{U}_{1j} - \partial_{ij} \overline{U}_{2j} \overline{U}_{2j} \right] W_{1j} \partial_{ij} \partial_{ij} \right] = \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{
$$

Simplified Case:

(Nonlinear) elastic, no thermal strain, no body force, traction free crack surfaces

$$
J = \int_{A^*} \left[\sigma_y \frac{\partial u_j}{\partial x_1} - w \delta_{1i} \right] \frac{\partial q}{\partial x_i} dA
$$

 $\frac{1}{\Delta a} \frac{\partial \Delta x_1}{\partial x_i}$ This is the same as deLorenzi's approach where finds a physical interpretation (virtual crack extension)

$$
G = \frac{1}{\Delta a} \int_{A} \left(\sigma_{ij} \frac{\partial u_j}{\partial x_i} - w \delta_{ij} \right) \frac{\partial \Delta x_i}{\partial x_i} dA
$$

289

J integral: 2. EDI FEM Aspects

Simplified Case:

(Nonlinear) elastic, no thermal strain, no body force, traction free crack surfaces

$$
J = \int_{A^*} \left[\sigma_y \frac{\partial u_j}{\partial x_1} - w \delta_{1i} \right] \frac{\partial q}{\partial x_i} dA
$$

J integral: 2. EDI FEM Aspects

. Plateau q function useful when inner elements are not very accurate: e.g. when singular/quarter point elements are not used

6.1.5. Finite Element mesh design for fracture mechanics \subset

